Skip to main content
Log in

A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The DORIS Doppler measurements collected by Jason-1 are abnormally perturbed by the influence of the South Atlantic Anomaly (SAA). The DORIS ultra-stable oscillators on-board Jason-1 are not as stable as they should be; their frequency is sensitive both to the irradiation rate and to the total irradiation encountered in orbit. The consequence is that not only are the DORIS measurement residuals higher than they ought to be, but also large systematic positioning errors are introduced for stations located in the vicinity of the SAA. In this paper, we present a method that has been devised to obtain a continuous observation of Jason-1 frequency offsets. This method relies on the precise determination of the station frequency and troposphere parameters via the use of other DORIS satellites. More than 3 years of these observations have then been used to construct a model of response of the oscillators of Jason-1 to the SAA. The sensitivity of the Jason-1 oscillators to the SAA perturbations has evolved over time, multiplied by a factor of four between launch and mid-2004. The corrective performances of the model are discussed in terms of DORIS measurement residuals, precise orbit determination and station positioning. The average DORIS measurement residuals are decreased by more than 7 % using this model. In terms of precise orbit determination, the 3D DORIS-only orbit error decreases from 5 to 4.2 cm, but the DORIS+SLR orbit error is almost unaffected, due to the already good quality of this type of orbit. In terms of station positioning, the model brings down the average 3D mono-satellite monthly network solution discrepancy with the International Terrestrial Reference Frame ITRF2000 from 11.3 to 6.1 cm, and also decreases the scatter about that average from 11.3 to 3.7 cm. The conclusion is that, with this model, it is possible to re-incorporate Jason-1 in the multi-satellite geodetic solutions for the DORIS station network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000, A new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10):2214. DOI 10.1029/2001JB000561

    Article  Google Scholar 

  • Armstrong TW, Colborn BL (1992) Predictions of induced radioactivity for spacecraft in low Earth orbit. Rad Meas 20(1):101–130

    Article  Google Scholar 

  • Badhwar GD, Kushin VV, Akatov YA, Myltseva VA (1999) Effects of trapped proton flux anisotropy on dose rates in low Earth orbit. Nucl Tracks Rad Meas 30(3):415–426

    Google Scholar 

  • Candelier V, Canzian P, Lamboley J, Brunet M, Santarelli G (2003) Space qualified 5 MHz ultra stable oscillators. In: Proceedings of the 2003 IEEE international frequency control symposium, pp 575–582. DOI 10.1109/FREQ.2003.1275155

  • Canzian P (2005) Rapport de mesures de caractérisation d’oscillateurs sous radiations à faible débit de dose. C-MAC/ONERA/DERTS report 092975_01-C-MAC

  • Chelton DB, Schlax MG (2003) The accuracies of smoothed sea surface height fields constructed from tandem satellite altimeter datasets. J Atmos Oceanic Technol 20(9):1276–1302. DOI 10.1175/1520–0426(2003)020 < 1276:TAOSSS > 2.0.CO;2

  • Choi KR, Ries JC, Tapley BD (2004) Jason-1 precision orbit determination by combining SLR and DORIS with GPS tracking data. Mar Geod 27(1–2):319–333, DOI 10.1080/01490410490465652

    Article  Google Scholar 

  • Debaisieux A, Aubry JP, Brunet M (1986) A satellite oscillator for very precise orbitography – the DORIS program. IEEE Trans Ultrason Ferroelectr Freq Control 33(1):121–121

    Google Scholar 

  • Diner DJ, Beckert JC, Reilly TH, Bruegge CJ, Conel JE, Kahn RA, Martonchik JV, Ackerman TP, Davies R, Gerstl SAW, Gordon HR, Muller JP, Myneni RB, Sellers PJ, Pinty B, Verstraete MM (1998) Multi-angle imaging spectroRadiometer (MISR), instrument description and experiment overview. IEEE Trans Geosci Remote Sens 36(4):1072–1087

    Article  Google Scholar 

  • Diner DJ, Beckert JC, Bothwell GW, Rodriguez JI (2002) Performance of the MISR instrument during its first 20 months in Earth orbit. IEEE Trans Geosci Remote Sens 40(7):1449–1466 DOI 10.1109/TGRS.2002.801584

    Article  Google Scholar 

  • Dorrer M, Laborde B, Deschamp P (1991) DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite). System assessment results with DORIS on SPOT2. Acta Astronaut 25:497–504

    Article  Google Scholar 

  • Fagard H (2006) 20 years of evolution for the DORIS permanent network: from its initial deployment to its renovation. J Geod (submitted)

  • Fraser-Smith AC (1987) Centered and eccentric geomagnetic dipoles and their poles, 1600–1985. Rev Geophys 25:1–16

    Google Scholar 

  • Fu LL, Christensen EJ, Yamarone CA, Lefebvre M, Ménard Y, Dorrer M, Escudier P (1994) TOPEX/Poseidon mission overview. J Geophys Res 99(C12):24369–24381

    Article  Google Scholar 

  • Guier WH (1963) Studies on Doppler residuals 1: Dependence on satellite orbit error and station position error. JHU/APL TG-503, Applied Physic Laboratory, The Johns Hopkins University, Laurel

  • Heynderickx D (1996) Comparison between methods to compensate for the secular motion of the South AtlanticAnomaly. Nucl Tracks Radiat Meas 26:325–331

    Google Scholar 

  • Huston SL, Pfitzer KA (1998) Space environment effects: low-altitude trapped radiation model. NASA/CR-1998–208593, NASA′s Space Environments and Effects (SEE), NASA Marshall Space Flight Centre, AL 35812, pp 63

  • Meffert JD, Gussenhoven MS (1994) CRRESPRO documentation, PL-TR-94–2218, Environmental Research Papers, 1158, Phillips Laboratory

  • Ménard Y, Fu LL, Escudier P, Parisot F, Perbos J, Vincent P, Desai S, Haines B, Kuntsmann G (2003) The Jason-1 mission. Mar Geod 26(3–4):131–146

    Google Scholar 

  • Sawyer DM, Vette JI (1976) AP-8 trapped proton environment for solar maximum and solar minimum, NSSDC/WDC-A-R&S 76–06, National Space Science Data Center, Report 76–06, Greenbelt

  • Tavernier G, Granier JP, Jayles C, Sengenes P, Rozo F (2003) The current evolutions of the DORIS system. Integr Space Geod Syst Satell Dyn Adv Space Res 31(8):1947–1952

    Google Scholar 

  • Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries J, Soudarin L, Willis P (2005) The International DORIS Service (IDS). Adv Space Res 36(3):333–341, DOI 10.1016/j.asr.2005.03.102

    Article  Google Scholar 

  • Vette J (1991) The NASA/National Space Science Data Center trapped radiation environment model program (1964–1991). National Space Science Data Center, Report 91–29, Greenbelt

  • Vondrak J, Cepek A (2000) Combined smoothing method and its use in combining Earth orientation parameters measured by space techniques. Astron Astrophys 147(2):347–359

    Google Scholar 

  • Willis P, Haines B, Bar-Sever Y, Bertiger W, Muellerschoen R, Kuang D, Desai S (2003) TOPEX/Jason combined GPS/DORIS orbit determination in the tandem phase. Adv Space Res 31(8):1941–1946, DOI 10.1016/S0273–1177(03)00156-X

    Article  Google Scholar 

  • Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behaviour of the DORIS/Jason oscillator over the South Atlantic Anomaly. CR Geosci 336(9):839–846, DOI 10.1016/j.crte.2004.01.004

    Article  Google Scholar 

  • Willis P, Ries JC (2005) Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000, methods and realization. J Geod 79(6–7):370–378, DOI 10.1007/s00190–005–0475–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Lemoine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemoine, JM., Capdeville, H. A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly. J Geodesy 80, 507–523 (2006). https://doi.org/10.1007/s00190-006-0068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0068-2

Keywords

Navigation