Skip to main content
Log in

Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

New Zealand uses 13 separate local vertical datums (LVDs) based on geodetic levelling from 12 different tide-gauges. We describe their unification using a regional gravimetric quasigeoid model and GPS-levelling data on each LVD. A novel application of iterative quasigeoid computation is used, where the LVD offsets computed from earlier models are used to apply additional gravity reductions from each LVD to that model. The solution converges after only three iterations yielding LVD offsets ranging from 0.24 to 0.58 m with an average standard deviation of ±0.08 m. The so-computed LVD offsets agree, within expected data errors, with geodetically levelled height differences at common benchmarks between adjacent LVDs. This shows that iterated quasigeoid models have a role in vertical datum unification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amos MJ (2007) Quasigeoid modelling in New Zealand to unify multiple local vertical datums. PhD Thesis, Department of Spatial Sciences, Curtin University of Technology, Perth

  • Amos MJ, Featherstone WE (2003) Preparations for a new gravimetric geoid model of New Zealand, and some preliminary results. NZ Surv 293: 3–14

    Google Scholar 

  • Amos MJ, Featherstone WE (2004) A comparison of gridding techniques for terrestrial gravity observations in New Zealand. Poster presented to the Gravity, Geoid and Space Missions Symposium 2004, Oporto, Portugal, 30 August–1 September. http://www.fc.up.pt/ggsm2004/index.html

  • Amos MJ, Featherstone WE, Brett J (2005) Crossover adjustment of New Zealand marine gravity data, and comparisons with satellite altimetry and global geopotential models. In: Jekeli C, Bastos L, Fernandes J (eds) Gravity, geoid and space missions. Springer, Berlin, pp 266–271

    Chapter  Google Scholar 

  • Andersen OB, Knudsen P (2000) The role of satellite altimetry in gravity field modelling in coastal areas. Phys Chem Earth 25(1): 17–24. doi:10.1016/S1464-1895(00)00004-1)00004-1

    Article  Google Scholar 

  • Andersen OB, Knudsen P, Trimmer R (2005) Improved high resolution altimetric gravity field mapping (KMS2002 global marine gravity field). In: Sansò F (eds) A window on the future of geodesy. Springer, Berlin, pp 326–331

    Chapter  Google Scholar 

  • Arabelos D, Tscherning CC (2001) Improvements in height datum transfer expected from the GOCE mission. J Geod 75(5–6): 308–312. doi:10.1007/s001900100187

    Article  Google Scholar 

  • Beanland S, Blick GH, Darby DJ (1990) Normal faulting in a back-arc basin: geological and geodetic characteristics of the 1987 Edgecumbe earthquake, New Zealand. J Geophys Res 95(B4): 4693–4707

    Article  Google Scholar 

  • Beavan RJ, Matheson DW, Denys P, Denham M, Herring T, Hager B, Molnar P (2004) A vertical deformation profile across the Southern Alps, New Zealand, from 3.5 years of continuous GPS data. In: van Dam T, Francis O (eds) Proceedings of the Cahiers du Centre Européen de Géodynamique et de Séismologie workshop: The State of GPS Vertical Positioning Precision: Separation of Earth Processes by Space Geodesy, Luxembourg, vol 23, pp 111–123

  • Begg JG, McSaveney MJ (2005) Wairarapa fault rupture—vertical deformation in 1855 and a history of similar events from Turakirae Head. In: Langridge R, Townend J, Jones A (eds) The 1855 Wairarapa Earthquake Symposium Proceedings, Greater Wellington Regional Council. Wellington, New Zealand, pp 21–30

    Google Scholar 

  • Bell RG, Goring DG, de Lange WP (2000) Sea-level change and storm surges in the context of climate change. IPENZ Trans 27(1): 1–10

    Article  Google Scholar 

  • Bevin AJ, Otway PM, Wood PR (1984) Geodetic monitoring of crustal deformation in New Zealand. In: Walcott RI (eds) An Introduction to the recent crustal movements of New Zealand, Royal Society Miscellaneous Series 7, Royal Society of New Zealand. Wellington, New Zealand, pp 13–60

    Google Scholar 

  • Blick GH, Mole D, Pearse MB, Wallen B (1997) Land information New Zealand role in and needs for sea level data. Immediate Report 97/17, Land Information New Zealand, Wellington, New Zealand. Available from: http://www.linz.govt.nz/surveypublications

  • Boucher C, Altamimi Z, Sillard P (1998) Results and analysis of the ITRF96. IERS Technical Note 24, Observatoire de Paris, Paris, France

  • Brett J (2004) Marine gravity crossover adjustment for New Zealand. Report to Land Information New Zealand, Intrepid Geophysics, Melbourne, Australia

  • Burša M, Kenyon S, Kouba J, šíma Z, Vatrt V, Vojtíšková M (2004) A global vertical reference frame based on four regional vertical datums. Stud Geophys Geod 48(3): 493–502. doi:10.1023/b:sgeg.0000037468.48585.e6

    Article  Google Scholar 

  • Burša M, Kenyon S, Kouba J, šíma Z, Vatrt V, Vítek V, Vojtíšková M (2007) The geopotential value W 0 for specifying the relativistic atomic time scale and a global vertical reference system. J Geod 81(2): 103–110. doi:10.1007/s00190-006-0091-3

    Article  Google Scholar 

  • Cross PA, Hannah J, Hradilek L, Kelm R, Mäkinen J, Merry CL, Sjöberg LE, Steeves RR, Vaníček P, Zolkoski DB (1987) Four-dimensional geodetic positioning. Manuscr Geodaet 12(3): 147–222

    Google Scholar 

  • Deng XL, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. J Geophys Res 111: C06012. doi:10.1029/2005JC003039

    Article  Google Scholar 

  • DoSLI (1989) Geodetic survey branch manual of instruction. Department of Survey and Land Information, Wellington, New Zealand

  • Ellmann A (2005) Two deterministic and three stochastic modifications of Stokes’s formula: a case study for the Baltic countries. J Geod 79(1): 11–23. doi:10.1007/s00190-005-0438-1

    Article  Google Scholar 

  • Featherstone WE (2000) Towards the unification of the Australian height datum between mainland and Tasmania using GPS and AUSGeoid98. Geom Res Aust 73: 33–54

    Google Scholar 

  • Featherstone WE, Kirby JF (2000) The reduction of aliasing in gravity anomalies and geoid heights using digital terrain data. Geophys J Int 141(1): 204–212. doi:10.1046/j.1365-246x.2000.00082.x

    Article  Google Scholar 

  • Featherstone WE, Sideris MG (1998) Modified kernels in spectral geoid determination: first results from Western Australia. In: Forsberg R, Feissl M, Dietrich R (eds) Geodesy on the Move. Springer, Berlin, pp 188–193

    Google Scholar 

  • Featherstone WE, Kuhn M (2006) Height systems and vertical datums: a review in the Australian context. J Spatial Sci 51(1): 21–42

    Google Scholar 

  • Featherstone WE, Evans JD, Olliver JG (1998) A Meissl-modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. J Geod 72(3): 154–160. doi:10.1007/s001900050157

    Article  Google Scholar 

  • Featherstone WE, Kirby JF, Kearsley AHW, Gilliland JR, Johnston GM, Steed J, Forsberg R, Sideris MG (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. J Geod 75(5–6): 313–330. doi:10.1007/s001900100177

    Article  Google Scholar 

  • Featherstone WE, Holmes SA, Kirby JF, Kuhn M (2004) Comparison of Remove-Compute-Restore and University of New Brunswick techniques to geoid determination over Australia, and inclusion of Wiener-type filters in reference field contribution. J Surv Eng 130(1): 40–47. doi:10.1061/(ACSE)0733-9453)(2004)130:1(40)

    Article  Google Scholar 

  • Gilliland JR (1987) A review of the levelling networks of New Zealand. NZ Surv 271: 7–15

    Google Scholar 

  • Goldan H-J, Seeber G (1994) Precise tide gauge connection to the island of Helgoland. Mar Geod 17(2): 147–152

    Google Scholar 

  • Grafarend EW, Ardalan AA (1997) W0: an estimate of the Finnish Height Datum N60, epoch 1993.4 from twenty-five GPS points of the Baltic sea level project. J Geod 71(11): 673–679. doi:10.1007/s001900050134

    Article  Google Scholar 

  • Haagmans R, De Min E, Van Gelderen M (1993) Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes’ integral. Manuscr Geodaet 18(5): 227–241

    Google Scholar 

  • Hackney RI, Featherstone WE (2003) Geodetic versus geophysical perspectives of the ‘gravity anomaly’, Geophys J Int 154(1):35–43. doi:10.1046/j.1365-246X.2003.01941.x [Errata in 154(2):596, doi:10.1046/j.1365-246X.2003.02058.x and 167(2):585–585, doi:10.1111/j.1365-246X.2006.03035.x].

    Google Scholar 

  • Hannah J (1990) Analysis of mean sea level data from New Zealand for the period 1899–1988. J Geophys Res 95(B8): 12399–12405

    Article  Google Scholar 

  • Hannah J (2001) An assessment of New Zealand’s height systems and options for a future height datum. Report prepared for Land Information New Zealand, University of Otago, Dunedin, New Zealand

  • Heck B (2003) Rechenverfahren und Auswertemodelle der Landesvermessung, 3rd edn. Wichman, Karlsruhe, Germany

    Google Scholar 

  • Heck B, Grüninger W (1987) Modification of Stokes’s integral formula by combining two classical approaches. In: Proceedings of the XIX General Assembly of the International Union of Geodesy and Geophysics, Vancouver, Canada, vol 2, pp 309–337

  • Heck B, Rummel R (1990) Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data. In: Sünkel H, Baker T (eds) Sea-surface topography and the geoid. Springer, Berlin, pp 116–128

    Google Scholar 

  • Henderson J (1933) The geological aspects of the Hawkes Bay earthquakes. NZ J Sci Tech 15(1): 38–75

    Google Scholar 

  • Hipkin RG (2000) Modelling the geoid and sea surface topography in coastal areas. Phys Chem Earth 25(1): 9–16. doi:10.1016/S1464-1895(00)00003-X

    Article  Google Scholar 

  • Humphries T (1908) Circular 847. Surveyor-general. Department of Lands and Survey. Wellington, New Zealand

    Google Scholar 

  • Hunt TM, Ferry LM (1975) Gravity measurements at principal New Zealand stations. NZ J Geo Geophys 18(3): 713–720

    Google Scholar 

  • IAG (1967) Geodetic reference system 1971. Special Publication 3 of Bulletin Géodésique, Paris, France

  • Janák J, Vaníček P (2005) Mean free-air gravity anomalies in the mountains. Stud Geophys Geod 49(1): 31–42. doi:10.1007/s11200-005-1624-6

    Article  Google Scholar 

  • Kirby JF, Forsberg R (1998) A comparison of techniques for the integration of satellite altimeter and surface gravity data for geoid determination. In: Forsberg R, Feissel M, Dietrich R (eds) Geodesy on the move. Springer, Berlin, pp 207–212

    Google Scholar 

  • Kumar M, Burke KJ (1998) Realizing a global vertical datum with the use of the geoid. In: Vermeer M, ádám J (eds) Report 98:4, Second Continental Worksop on the Geoid, Finnish Geodetic Institute, Masala, Finland, pp 87–94

  • Laskowski P (1983) The effect of vertical datum inconsistencies on the determination of gravity related quantities. Report 349, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio

  • Lemoine FG, Kenyon SC, Factor RG, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861, Goddard Space Flight Center, Greenbelt, USA

  • Lensen GJ, Otway PM (1971) Earthshift and post earthshift deformation associated with the May 1968 Inangahua earthquake, New Zealand. R Soc NZ Bull 9(1): 107–167

    Google Scholar 

  • LINZ (2007) LINZS25000 Standard for New Zealand Geodetic Datum 2000. Land Information New Zealand, Wellington, New Zealand

  • Martinec Z, Vaníček P, Mainville A, Véronneau M (1996) Evaluation of topographical effects in precise geoid computation from densely sampled heights. J Geod 70(11): 746–754. doi:10.1007/BF00867153

    Google Scholar 

  • Meissl P (1971) Preparations for the numerical evaluation of second-order Molodensky-type formulas. Report 163, Department of Geodetic Science and Surveying, Ohio State University, Columbus

  • Merry C, Vaníček P (1983) Investigation of local variations of sea surface topography. Mar Geod 7(2): 101–126

    Google Scholar 

  • Morelli C, Gantar C, Honkaslo T, McConnell RK, Tanner TG, Szabo B, Uotila U, Whalen CT (1974) The International Gravity Standardisation Network 1971 (IGSN71). Special Publication 4 of Bulletin Géodésique, International Association of Geodesy, Paris, France

  • Moritz H (1968) On the use of the terrain correction in solving Molodensky’s problem. Report 108, Department of Geodetic Science and Surveying, Ohio State University, Columbus

  • Moritz H (1980) Geodetic Reference System 1980. B Geod 54(3): 395–405. doi:10.1007/BF02521480

    Article  Google Scholar 

  • Nagy D (1966) The prism method for terrain corrections using digital computers. Pure Appl Geophys 63(1): 31–39. doi:10.1007/BF00875156

    Article  Google Scholar 

  • Nagy D (1966) The gravitational attraction of a right angular prism. Geophysics 31(2): 362–371. doi:10.1190/1.1439779

    Article  Google Scholar 

  • Nahavandchi H, Sjöberg LE (1998) Unification of vertical datums by GPS and gravimetric geoid models using modified Stokes formula. Mar Geod 21(4): 261–273

    Article  Google Scholar 

  • OSG (2003) Accuracy standards for geodetic surveys. SG Standard 1, Office of the Surveyor-General, Land Information New Zealand, Wellington, New Zealand. Available from http://www.linz.govt.nz/surveypublications

  • Otway PM, Blick GH, Scott BJ (2002) Vertical deformation at Lake Taupo, New Zealand, from lake levelling surveys. NZ J Geol Geophys 45(1): 121–132

    Google Scholar 

  • Pan M, Sjöberg L (1998) Unification of vertical datums by GPS and gravimetric geoid models with application to Fennoscandia. J Geod 72(2): 64–70. doi:10.1007/s001900050149

    Article  Google Scholar 

  • Pugh D (2004) Changing sea levels: effects of tides, weather and climate. Cambridge University Press, Cambridge

    Google Scholar 

  • Rapp RH (1961) The orthometric height. MS Thesis, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio

  • Rapp RH (1995) A world vertical datum proposal. Allgemeine Vermessungs-Nachrichten 102(8–9): 297–304

    Google Scholar 

  • Rapp RH, Balasubramania N (1992) A conceptual formulation of a world height system. Report 421, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio

  • Reilly WI (1972) New Zealand gravity map series. NZ J Geol Geophys 15(1): 3–15

    Google Scholar 

  • Rizos C, Coleman R, Ananga N (1991) The Bass Strait GPS survey: preliminary results of an experiment to connect Australian height datums. Aust J Photogram Surv 55: 1–25

    Google Scholar 

  • Rummel R, Teunissen PJG (1988) Height datum definition, height datum correction and the role of the geodetic boundary value problem. B Geod 62(4): 477–498. doi:10.1007/BF02520239

    Article  Google Scholar 

  • Strykowski G, Forsberg R (1998) Operational merging of satellite airborne and surface gravity data by draping techniques. In: Forsberg R, Feissl M, Dietrich R (eds) Geodesy on the move. Springer, Berlin, pp 207–212

    Google Scholar 

  • Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Poole S, Wang F (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod 79(8): 467–478. doi:10.1007/s00190-005-0480-z

    Article  Google Scholar 

  • Tscherning CC, Forsberg R, Knudsen P (1992) The GRAVSOFT package for geoid determination. In: Holota P, Vermeer M (eds) Proceedings of the 1st Continental Workshop on the Geoid in Europe, May 11–14, Prague, Czech Republic, pp 327–334

  • Vaníček P, Featherstone WE (1998) Performance of three types of Stokes’s kernel in the combined solution of the geoid. J Geod 72(12): 684–697. doi:10.1007/s001900050209

    Article  Google Scholar 

  • Vaníček P, Kleusberg A (1987) The Canadian geoid—Stokesian approach. Manuscr Geod 12(2): 86–98

    Google Scholar 

  • Walcott RI (1984) The kinematics of the Plate Boundary Zone through New Zealand: a comparison of short- and long-term deformations. Geophys J R Astr Soc 79(2): 613–633

    Google Scholar 

  • Wellman HW (1979) An uplift map for the South Island of New Zealand, and a model for uplift of the Southern Alps. In: Walcott RI, Cresswell MM (eds) The Origin of the Southern Alps, Bulletin 18, Royal Society of New Zealand. Wellington, New Zealand

    Google Scholar 

  • Wessel P, Watts AB (1988) On the accuracy of marine gravity measurements. J Geophys Res 94(B4): 7685–7729

    Google Scholar 

  • Wong L, Gore R (1969) Accuracy of geoid heights from modified Stokes kernels. Geophys J R Astr Soc 18: 81–91

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Amos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amos, M.J., Featherstone, W.E. Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations. J Geod 83, 57–68 (2009). https://doi.org/10.1007/s00190-008-0232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-008-0232-y

Keywords

Navigation