Skip to main content
Log in

Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modeling

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

As any satellite geodesy technique, DORIS can monitor geocenter variations associated to mass changes within the Earth–Atmosphere–Continental hydrosphere–Oceans system. However, especially for the Z-component, corresponding to a translation of the Earth along its rotation axis, the estimated geocenter is usually affected by large systematic errors of unknown cause. By reprocessing old DORIS data, and by analyzing single satellite solutions in the frequency domain, we show that some of these errors are satellite-dependent and related to the current DORIS orbit determination strategy. In particular, a better handling of solar pressure radiation effects on SPOT-2 and TOPEX satellites is proposed which removes a large part of such artifacts. By empirically multiplying the current solar pressure model with a single coefficient (1.03 for TOPEX/Poseidon after 1993.57, and 0.96 before; and 1.08 for SPOT-2) estimated over a long time period, we can improve the measurement noise of the Z-geocenter component from 47.5 to 30.4 mm for the RMS and from 35 to 6 mm for the amplitude of the annual signal. However, the estimated SRP coefficient for SPOT-2 presents greater temporal variability, indicating that a new, dedicated solar radiation pressure model is still needed for precise geodetic applications. In addition, for the TOPEX satellite, a clear discontinuity of unknown cause is also detected on July 27, 1993.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Boucher C, Willis P (2005) Terrestrial Reference Frame requirements within GGOS perspective. J Geodyn 40(4–5): 363–374. doi:10.1016/j.jog.2005.06.002

    Article  Google Scholar 

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005, A new release of the International Terrestrial Reference Frame based on time series of station positions and earth orientation parameters. J Geophys Res 112(B9): B09401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Amalvict M, Willis P, Wöppelmann G, Ivins E, Bouin MN, Testud L, Hindered J Isostatic stability of the East Antarctic station Dumont d’Urville from long-term geodetic observations and geophysical models. Polar Res (in press). doi:10.1111/j.1751-8369.2008.00091x

  • Antreasian PG (1992) Precision radiation force modeling for the TOPEX/Poseidon mission (Photon thrust). Ph.D. Thesis, Boulder, U. Colorado, USA

  • Antreasian PG, Rosborough GW (1992) Prediction of radiant energy forces on the TOPEX/Poseidon spacescraft. J Spacecr Rockets 29(1): 81–90. doi:10.2514/3.26317

    Article  Google Scholar 

  • Bar-Sever Y, Russ KM (1997) New and Improved Solar Radiation Models for GPS Satellites Based on Flight Data, JPL Final Report (RF-182/808), 30pp

  • Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensky NP (2007) Reassesment of global and regional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits. Geophys Res Lett 34(14): L14608. doi:10.1029/2007GL030002

    Article  Google Scholar 

  • Crétaux JF, Soudarin L, Davidson FJM, Gennero MC, Berge-Nguyen M, Cazenave A (2002) Seasonal and interannual geocenter motion from SLR and DORIS measurements, comparison with surface loading data. J Geophys Res 107(B12): 2374. doi:10.1029/2002JB001820

    Article  Google Scholar 

  • Dong D, Dickey JO, Cheng MK (1997) Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys Res Lett 24(15): 1867–1870. doi:10.1029/97GL01849

    Article  Google Scholar 

  • Dong D, Yunck T, Heflin M (2003) Origin of the international terrestrial reference frame. J Geophys Res 108(B4): 2200. doi:10.1029/2002JB002035

    Article  Google Scholar 

  • Doornbos E, Willis P (2007) Analysis of DORIS range-rate residuals for TOPEX/Poseidon, Jason, ENVISAT and SPOT. Acta Astronaut 60(8–9): 611–621. doi:10.1016/j.actaastro.2006.07.012

    Article  Google Scholar 

  • Dow JM, Neilan RE, Gendt G (2005) The international GPS service (IGS): celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36(3): 320–326. doi:10.1016/j.asr.2005.05.125

    Article  Google Scholar 

  • Feissel-Vernier M, de Viron O, Le Bail K (2007) Stability of VLBI, SLR, DORIS and GPS positioning. Earth Planets Space 59(6): 475–497

    Google Scholar 

  • Ferland R, Kouba J, Hutchison D (2000) Analysis methodology and recent results of the IGS network combination. Earth Planets Space 52: 953–957

    Google Scholar 

  • Fliegel HF, Gallini TE, Swift ER (1992) Global Positioning System radiation force model for geodetic applications. J Geophys Res 97(B1): 559–568. doi:10.1029/91JB02564

    Article  Google Scholar 

  • Haines B, Bar-Sever Y, Bertiger W, Desai S, (2004) One-centimeter orbit determination for Jason-1: new GPS-based strategies. MARINE GEOD 27(1–2): 299–318

    Google Scholar 

  • Lavallée DA, van Dam T, Blewitt G, Clarke PJ (2006) Geocenter motions from GPS, a unified observation model. J Geophys Res 111(B5): B05405. doi:10.1029/2005JB003784

    Article  Google Scholar 

  • Lemoine JM, Capdeville H (2006) A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly. J Geod 80(8–11): 507–523. doi:10.1007/s00190-006-0068-2

    Article  Google Scholar 

  • Luthcke SB, Marshall SA (1992) Non-conservative force model parameter estimation strategy for TOPEX/Poseidon Precision Orbit Determination, NASA Techn Memo

  • Marquis W, Krier C (2000) Examination of the GPS block IIR solar pressure model. ION GPS 2000, 19–22 September 2000, Salt Lake City, UT, pp 407–415

  • Marshall JA, Luthcke SB (1992) Nonconservative force model parameter estimation strategy for TOPEX/Poseidon precision orbit determination, NASA Techn. Memo 104575, Goddard Space Flight Center, 39pp

  • Marshall JA, Luthcke SB (1994) Modeling radiation forces acting on TOPEX Poseidon for precise orbit determination. J Spacecr Rockets 31(1): 99–105. doi:10.2514/3.26408

    Article  Google Scholar 

  • Marshall JA, Luthcke SB, Antreasian PG, Rosborough GW (1992) Modelling radiation forces acting on Topex/Poseidon for precise orbit determination, NASA Techn. Memo 104564, Goddard Space Flight Center, 75pp

  • Marshall JA, Zelensky NP, Klosko SM, Luthcke SB, Rachlin KE, Williamson RG (1995) The temporal and spatial characteristics of TOPEX/POSEIDON radial orbit error. J Geophys Res 100(C12): 25331–25352. doi:10.1029/95JC01845

    Article  Google Scholar 

  • Meisel B, Angermann D, Krugel M, Drewes H, Gerstl M, Kelm R, Muller H, Seemuller W, Tesmer V (2005) Refined approaches for terrestrial reference frame computations. Adv Space Res 36(3): 350–357. doi:10.1016/j.asr.2005.04.057

    Article  Google Scholar 

  • Moore P, Wang J (2003) Geocentre variation from Laser tracking of LAGEOS 1/2 and loading data. Adv Space Res 31(8): 1927–1933. doi:10.1016/S0273-1177(03)00170-4

    Article  Google Scholar 

  • Morel L, Willis (2002) Parameter sensitivity of TOPEX orbit and derived mean sea level to DORIS station coordinates. Adv Space Res 30(2): 255–263. doi:10.1016/S0273-1177(02)00293-4

    Article  Google Scholar 

  • Morel L, Willis P (2005) Terrestrial reference frame effects on sea level rise determined by TOPEX/Poseidon. Adv Space Res 36(3): 358–368. doi:10.1016/j.asr.2005.05.113

    Article  Google Scholar 

  • Springer TA, Beutler G, Rothacher M (1999) Improving the orbit estimates of GPS satellites. J Geod 73(3): 147–157. doi:10.1007/s001900050230

    Article  Google Scholar 

  • Tapley BD, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02, an improved Earth gravity model from GRACE. J Geod 79(8): 467–478. doi:10.1007/s00190-005-0480-z

    Article  Google Scholar 

  • Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries J, Soudarin L, Willis P (2005) The international DORIS service. Adv Space Res 36(3): 333–341. doi:10.1016/j.asr.2005.03.102

    Article  Google Scholar 

  • Tavernier G, Fagard H, Feissel-Vernier M, Le Bail K, Lemoine F, Noll C, Noomen R, Ries JC, Soudarin L, Valette JJ, Willis P (2006) The international DORIS service: genesis and early achievements. J Geod 80(8–11): 403–417. doi:10.1007/s00190-006-0082-4

    Article  Google Scholar 

  • Urschl C, Beutler G, Gurtner W, Hugentobler U, Schaer S (2007) Contribution of SLR tracking data to GNSS orbit determination. Adv Space Res 39(10): 1515–1523. doi:10.1016/j.asr.2007.01.038

    Article  Google Scholar 

  • Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network. J Geod 80(8–11): 525–539. doi:10.1007/s00190-006-0056-6

    Article  Google Scholar 

  • Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly. C R Geosci 336(9): 839–846. doi:10.1016/j.crte.2004.01.004

    Article  Google Scholar 

  • Willis P, Bar-Sever YE, Tavernier G (2005a) DORIS as a potential part of a Global Geodetic Observing System. J Geodyn 40(4–5): 494–501. doi:10.1016/j.jog.2005.06.011

    Article  Google Scholar 

  • Willis P, Boucher C, Fagard H, Altamimi Z (2005b) Geodetic applications of the DORIS system at the French Institut Géographique National. C R Geosci 337(7): 653–662. doi:10.1016/j.crte.2005.03.002

    Article  Google Scholar 

  • Willis P, Berthias J-P, Bar-Sever YE (2006) Systematic errors in the Z-geocenter derived using satellite tracking data, a case study from SPOT-4 DORIS data in 1998. J Geod 79(10–11): 567–572. doi:10.1007/s00190-005-0013-9

    Article  Google Scholar 

  • Willis P, Soudarin L, Jayles C, Rolland L (2007a) DORIS applications for solid Earth and atmospheric sciences. C R Geosci 339(16): 949–959. doi:10.1016/j.crte.2007.09.015

    Article  Google Scholar 

  • Willis P, Haines BJ, Kuang D (2007b) DORIS satellite phase center determination and consequences on the derived scale of the Terrestrial Reference Frame. Adv Space Res 39(10): 1589–1596. doi:10.1016/j.asr.2007.01.007

    Article  Google Scholar 

  • Ziebart M (2004) Generalized analytical solar radiation pressure modelling algorithm for spacecraft of complex shape. J Spacecr Rockets 41(5): 840–848. doi:10.2514/1.13097

    Article  Google Scholar 

  • Ziebart M, Adhya S, Sibthorpe A, Edwards S, Cross PA (2005) Combined radiation pressure and thermal modelling of complex satellites: algorithms and on-orbit tests. Adv Space Res 36(3): 424–430. doi:10.1016/j.asr.2005.01.014

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Willis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gobinddass, M.L., Willis, P., de Viron, O. et al. Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modeling. J Geod 83, 849–858 (2009). https://doi.org/10.1007/s00190-009-0303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-009-0303-8

Keywords

Navigation