Skip to main content
Log in

Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Although GNSS techniques are theoretically sensitive to the Earth center of mass, it is often preferable to remove intrinsic origin and scale information from the estimated station positions since they are known to be affected by systematic errors. This is usually done by estimating the parameters of a linearized similarity transformation which relates the quasi-instantaneous frames to a long-term frame such as the International Terrestrial Reference Frame (ITRF). It is well known that non-linear station motions can partially alias into these parameters. We discuss in this paper some procedures that may allow reducing these aliasing effects in the case of the GPS techniques. The options include the use of well-distributed sub-networks for the frame transformation estimation, the use of site loading corrections, a modification of the stochastic model by downweighting heights, or the joint estimation of the low degrees of the deformation field. We confirm that the standard approach consisting of estimating the transformation over the whole network is particularly harmful for the loading signals if the network is not well distributed. Downweighting the height component, using a uniform sub-network, or estimating the deformation field perform similarly in drastically reducing the amplitude of the aliasing effect. The application of these methods to reprocessed GPS terrestrial frames permits an assessment of the level of agreement between GPS and our loading model, which is found to be about 1.5 mm WRMS in height and 0.8 mm WRMS in the horizontal at the annual frequency. Aliased loading signals are not the main source of discrepancies between loading displacement models and GPS position time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112(B09401). doi:10.1029/2007JB004949

  • Altamimi, Z and Collilieux, X and Métivier, L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geodesy. doi:10.1007/s00190-011-0444-4

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108. doi:10.1029/2002JB002082

  • Blewitt G, Lavallée D (2000) Effect of annually repeating signals on geodetic velocity estimates. Tenth General Assembly of the WEGENER Project (WEGENER 2000), San Fernando, Spain, September 18–20

  • Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112(B12403). doi:10.1029/2007JB004933

  • Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114(B04402). doi:10.1029/2008JB005727

  • Collilieux X, Altamimi Z, Coulot D, van Dam T, Ray J (2010) Impact of loading effects on determination of the International Terrestrial Reference Frame. Adv Space Res 45: 144–154. doi:10.1016/j.asr.2009.08.024

    Article  Google Scholar 

  • Collilieux X, Métivier L, Altamimi Z, van Dam T, Ray J (2010b) Quality assessment of GPS reprocessed Terrestrial Reference Frame. GPS Solut. doi:10.1007/s10291-010-0184-6

  • Farrell WE (1972) Deformation of the earth by surface loads. Rev Geophys Space Phys 10(3): 761–797

    Article  Google Scholar 

  • Fritsche M, Dietrich R, Rülke A, Rothacher M, Steigenberger P (2010) Low-degree earth deformation from reprocessed GPS observations. GPS Solut 14(2): 165–175. doi:10.1007/s10291-009-0130-7

    Article  Google Scholar 

  • Guo J, Ou J, Wang H (2010) Robust estimation for correlated observations: two local sensitivity-based downweighting strategies. J Geodesy 84(4): 243–250. doi:10.1007/s00190-009-0361-y

    Article  Google Scholar 

  • Han D, Wahr J (1995) The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial rebound. Geophys J Int 120: 287–311. doi:10.1111/j.1365-246X.1995.tb01819.x

    Article  Google Scholar 

  • Herring T (2004) GLOBK: Global Kalman filter VLBI and GPS analysis program version 4.1. Tech. rep., Massachusetts Institute of Technology, Cambridge

  • Lavallée DA, van Dam TM, Blewitt G, Clarke PJ (2006) Geocenter motions from GPS: A unified observation model. J Geophys Res 111: 5405. doi:10.1029/2005JB003784

    Article  Google Scholar 

  • Mangiarotti S, Cazenave A, Soudarin L, Crétaux JF (2001) Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy. J Geophys Res 106: 4277–4292. doi:10.1029/2000JB900347

    Article  Google Scholar 

  • McCarthy D, Petit G (2004) IERS Technical Note 32-IERS Conventions (2003). Tech. rep., Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, Germany. http://maia.usno.navy.mil/conv2003.html

  • Petrov L, Boy J (2004) Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J Geophys Res 109(B18). doi:10.1029/2003JB002500

  • Ray J, Altamimi Z, Collilieux X, van Dam TM (2008) Anomalous harmonics in the spectra of GPS position estimates. GPS solution 12(1): 55–64. doi:10.1007/s10291-007-0067-7

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng CJ, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The Global Land Data Assimilation System. Bull Amer Meteor Soc 85(3): 381–394. doi:10.1175/BAMS-85-3-381

    Article  Google Scholar 

  • Stammer D, Wunsch C, Fukumori I, Marshall J (2002) State estimation improves prospects for ocean research. Eos Trans AGU 83(27): 289–295. doi:10.1029/2002EO000207

    Article  Google Scholar 

  • Tregoning P, van Dam TM (2005) Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. J Geophys Res 110: 3408. doi:10.1029/2004JB003334

    Article  Google Scholar 

  • van Dam TM, Herring TA (1994) Detection of atmospheric pressure loading using very long baseline interferometry measurements. J Geophys Res 99: 4505–5417. doi:10.1029/93JB02758

    Article  Google Scholar 

  • van Dam TM, Blewitt G, Heflin MB (1994) Atmospheric pressure loading effects on Global Positioning System coordinate determinations. J Geophys Res 99: 23939–23950. doi:10.1029/94JB02122

    Article  Google Scholar 

  • van Dam TM, Wahr J, Milly PCD, Shmakin AB, Blewitt G, Lavallée D, Larson KM (2001) Crustal displacements due to continental water loading. Geophys Res Lett 28: 651–654. doi:10.1029/2000GL012120

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans 72: 441. doi:10.1029/90EO00319

    Article  Google Scholar 

  • Wu X, Argus DF, Heflin MB, Ivins ER, Webb FH (2002) Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data. Geophys Res Lett 29(24): 2210. doi:10.1029/2002GL016324

    Article  Google Scholar 

  • Wu X, Heflin MB, Ivins ER, Argus DF, Webb FH (2003) Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation. Geophys Res Lett 30(14): 1742. doi:10.1029/2003GL017546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Collilieux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collilieux, X., van Dam, T., Ray, J. et al. Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J Geod 86, 1–14 (2012). https://doi.org/10.1007/s00190-011-0487-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0487-6

Keywords

Navigation