Skip to main content

Advertisement

Log in

Estimating geoid height change in North America: past, present and future

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The forthcoming GRAV-D gravimetric geoid model over the United States is to be updated regularly to account for changes in geoid height. Its baseline precision is to be at the 10–20 mm level over non-mountainous regions. The aim of this study is to provide an estimate of the magnitude, time scale, and spatial footprint of geoid height change over North America, from mass redistribution processes of hydrologic, cryospheric and solid Earth nature. Geoid height changes from continental water storage changes over the past 50 years and predicted over the next century are evaluated and are highly dependent on the used model. Groundwater depletion from anthropogenic pumping in regional scale aquifers may lead to geoid changes of 10 mm magnitude every 50–100 years. The GRACE time varying gravity fields are used to (i) assess the errors in a glacial isostatic adjustment model, which, if used to correct the GRAV-D model, may induce errors at the 10 mm geoid height level after ~20 years, (ii), evaluate geoid height change over ice mass loss regions of North America, which, if they remain unchanged in the future, may lead to geoid height changes at the 10 mm level in under a decade and (iii), compute sea level rise and its effect on the geoid, which is found to be negligible. Coseismic gravitational changes from past North American earthquakes are evaluated, and lead to geoid change at the 10-mm level for only the largest thrust earthquakes. Finally, geoid change from volcanic processes are assessed and found to be significant with respect to the GRAV-D geoid model baseline precision for cataclysmic events, such as that of the 1980 Mt. St. Helens eruption. Recommendations on how to best monitor geoid change in the future are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arendt AA, Luthcke SB, Larsen CF, Abdalati W, Krabill WB, Beedle MJ (2008) Validation of high-resolution GRACE mascon estimates of glacier mass changes in the St Elias Mountains, Alaska, USA, using aircraft laser altimetry. J Glaciol 54(188): 778–787

    Article  Google Scholar 

  • Brantley S, Myers B (2000) Mount St. Helens—From the 1980 Eruption to 2000. US Geological Survey Fact Sheet 036-00

  • Broerse DBT, Vermeersen LLA, Riva REM (2011) Ocean contribution to co-seismic crustal deformation and geoid anomalies: application to the 2004 December 26 Sumatra–Andaman earthquake. Earth Planet Sci Lett 305(3–4): 341–349. doi:10.1016/j.epsl.2011.03.011

    Article  Google Scholar 

  • Chambers DP (2009) Calculating trends from GRACE in the presence of large changes in continental ice storage and ocean mass. Geophys J Int 176(2): 415–419. doi:10.1111/j.1365-246X.2008.04012.x

    Article  Google Scholar 

  • Chang WL, Smith RB, Farrell J, Puskas CM (2010) An extraordinary episode of Yellowstone caldera uplift, 2004–2010, from GPS and InSAR observations. Geophys Res Lett 37: 6. doi:L2330210.1029/2010gl045451

    Article  Google Scholar 

  • Chao BF, Gross RS (1987) Changes in the Earths rotation and low-degree gravitational-field induced by earthquakes. Geophys J Roy Astron Soc 91(3): 569–596

    Article  Google Scholar 

  • Cheng MK, Tapley BD (2004) Variations in the Earth’s oblateness during the past 28 years. J Geophys Res Solid Earth 109(B09402): 9. doi:10.1029/2004jb003028

    Google Scholar 

  • Clark BR, Hart RM (2009) The Mississippi Embayment Regional Aquifer Study (MERAS): Documentation of a groundwater-flow model constructed to assess water availability in the Mississippi Embayment: U.S. Geological Survey Scientific Investigations Report 2009-5172, p 61

  • Dai A, Qian TT, Trenberth KE, Milliman JD (2009) Changes in continental freshwater discharge from 1948 to 2004. J Clim 22(10): 2773–2792. doi:10.1175/2008jcli2592.1

    Article  Google Scholar 

  • de Linage C, Rivera L, Hinderer J, Boy JP, Rogister Y, Lambotte S, Biancale R (2009) Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophys J Int 176(3): 695–714. doi:10.1111/j.1365-246X.2008.04025.x

    Article  Google Scholar 

  • Dennehy KF (2000) High Plains regional ground-water study: U.S. Geological Survey Fact Sheet FS-091-00, p 6

  • Dziewonski A, Anderson D (1981) Preliminary reference Earth model (Prem). Eos Trans 62(17): 332

    Google Scholar 

  • Entekhabi D, RodriguezIturbe I, Castelli F (1996) Mutual interaction of soil moisture state and atmospheric processes. J Hydrol 184(1–2): 3–17

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Space Phys 10(3): 761–797

    Article  Google Scholar 

  • Faunt CC (2009) Groundwater Availability of the Central Valley Aquifer, California: U.S. Geological Survey Professional Paper 1766, p 225

  • Gilbert F (1971) Excitation of normal modes of Earth by earthquake sources. Geophys J Roy Astron Soc 22(2): 223

    Article  Google Scholar 

  • Gilbert F, Dziewonski AM (1975) Application of normal mode theory to retrieval of structural parameters and source mechanisms from seismic spectra. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 278(1280): 187–269

    Article  Google Scholar 

  • Gross RS, Chao BF (2006) The rotational and gravitational signature of the December 26, 2004 Sumatran earthquake. Surv Geophys 27(6): 615–632. doi:10.1007/s10712-006-9008-1

    Article  Google Scholar 

  • Guntner A, Stuck J, Werth S, Doll P, Verzano K, Merz B (2007) A global analysis of temporal and spatial variations in continental water storage. Water Resour Res 43(5): 19. doi:W0541610.1029/2006wr005247

    Article  Google Scholar 

  • Gutentag ED, Heimes FJ, Krothe NC, Luckey RR, Weeks JB (1984) Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

  • Ichinose G, Somerville P, Thio HK, Graves R, O’Connell D (2007) Rupture process of the 1964 Prince William Sound, Alaska, earthquake from the combined inversion of seismic, tsunami, and geodetic data. J Geophys Res Solid Earth 112(B07306): 21. doi:10.1029/2006jb004728

    Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL Cambridge University Press, Cambridge

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3): 437–471

    Article  Google Scholar 

  • Kenny JF, Barber NL, Hutson SS, Linsey KS, Lovelace JK, Maupin MA (2009) Estimated use of water in the United States in 2005: U.S. Geological Survey Circular 1344

  • Khan SA, Wahr J, Bevis M, Velicogna I, Kendrick E (2010) Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys Res Lett 37(L06501): 5. doi:10.1029/2010gl042460

    Google Scholar 

  • Konikow LF, Kendy E (2005) Groundwater depletion: a global problem. Hydrogeol J 13(1): 317–320. doi:10.1007/s10040-004-0411-8

    Article  Google Scholar 

  • Li HB, Robock A, Wild M (2007) Evaluation of Intergovernmental panel on climate change fourth assessment soil moisture simulations for the second half of the twentieth century. J Geophys Res Atmos 112(D06106): 15. doi:10.1029/2006jd007455

    Google Scholar 

  • Luthcke SB, Zwally HJ, Abdalati W, Rowlands DD, Ray RD, Nerem RS, Lemoine FG, McCarthy JJ, Chinn DS (2006) Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 314(5803): 1286–1289. doi:10.1126/science.1130776

    Article  Google Scholar 

  • McGuire VL (2009) Water-level changes in the high plains aquifer, predevelopment to 2007, 2005–06, and 2006–07, U.S. Geological Survey Scientific Investigations Report 2009-5019

  • Milne GA, Gehrels WR, Hughes CW, Tamisiea ME (2009) Identifying the causes of sea-level change. Nat Geosci 2(7): 471–478. doi:10.1038/ngeo544

    Article  Google Scholar 

  • Mitrovica JX, Wahr J, Matsuyama I, Paulson A (2005) The rotational stability of an ice-age earth. Geophys J Int 161(2): 491–506. doi:10.1111/j.1365-246X.2005.02609.x

    Article  Google Scholar 

  • Nakicenovic N, Davidson O, Davis G, Grübler A, Kram T, Rovere ELL, Metz B, Morita T, Pepper W, Pitcher H, Sankovski A, Shukla P, Swart R, Watson R, Dadi Z (2000) Emissions scenarios—summary for policymakers. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Niu GY, Yang ZL, Dickinson RE, Gulden LE, Su H (2007) Development of a simple groundwater model for use in climate models and evaluation with gravity recovery and climate experiment data. J Geophys Res Atmos 112(D07103): 14. doi:10.1029/2006jd007522

    Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Flaner MG, Kluzek E, Lawrence PJ, Levis S, Swenson S, Thornton PE (2010) Technical Description of version 4.0 of the Community Land Model (CLM).

  • Oleson KW, Niu GY, Yang ZL, Lawrence DM, Thornton PE, Lawrence PJ, Stockli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res Biogeosci 113(G01021): 26. doi:10.1029/2007jg000563

    Google Scholar 

  • Panet I, Mikhailov V, Diament M, Pollitz F, King G, de Viron O, Holschneider M, Biancale R, Lemoine JM (2007) Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity. Geophys J Int 171(1): 177–190. doi:10.1111/j.1365-246X.2007.03525.x

    Article  Google Scholar 

  • Panet I, Pollitz F, Mikhailov V, Diament M, Banerjee P, Grijalva K (2010) Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra–Andaman earthquake. Geochem Geophys Geosyst 11: 20. doi:Q0600810.1029/2009gc002905

    Article  Google Scholar 

  • Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys. J. Int. 171: 497–508. doi:10.1111/j.1365-246X.2007.03556.x

    Article  Google Scholar 

  • Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32: 111–149. doi:10.1146/annurev.earth.32.082503.144359

    Article  Google Scholar 

  • Qian TT, Dai A, Trenberth KE, Oleson KW (2006) Simulation of global land surface conditions from 1948 to 2004. Part I: forcing data and evaluations. J Hydrometeorol 7(5): 953–975

    Article  Google Scholar 

  • Rangelova E, Sideris MG (2008) Contributions of terrestrial and GRACE data to the study of the secular geoid changes in North America. J Geodyn 46(3–5): 131–143. doi:10.1016/j.jog.2008.03.006

    Article  Google Scholar 

  • Rangelova E, Sideris MG, Fotopoulos G (2009) A dynamic reference surface for heights in Canada. Geomatica 63(4): 333–340

    Google Scholar 

  • Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, Liu SX, Namkhai A (2000) The global soil moisture data bank. Bull Am Meteorol Soc 81(6): 1281–1299

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3): 381–394. doi:310.1175/BAMS-1185-1173-1381

    Article  Google Scholar 

  • Rowlands DD, Luthcke SB, Klosko SM, Lemoine FGR, Chinn DS, McCarthy JJ, Cox CM, Anderson OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32(L04310): 4. doi:10.1029/2004gl021908

    Google Scholar 

  • Schmidt R, Flechtner F, Meyer U, Neumayer KH, Dahle C, Konig R, Kusche J (2008) Hydrological signals observed by the GRACE satellites. Surv Geophys 29(4–5): 319–334. doi:10.1007/s10712-008-9033-3

    Article  Google Scholar 

  • Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13): 3088–3111

    Article  Google Scholar 

  • Sheffield J, Wood EF (2008) Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim Dyn 31(1): 79–105. doi:10.1007/s00382-007-0340-z

    Article  Google Scholar 

  • Simons M, Hager BH (1997) Localization of the gravity field and the signature of glacial rebound. Nature 390(6659): 500–504

    Article  Google Scholar 

  • Smith DA, Edwards K (2010) Taking the “Boulder” step from static to dynamic geoid. Eos Trans 91(5): 46

    Article  Google Scholar 

  • Soldati G, Piersanti A, Boschi E (1998) Global postseismic gravity changes of a viscoelastic Earth. J Geophys Res Solid Earth 103(B12): 29867–29885

    Article  Google Scholar 

  • Steffen H, Petrovic S, Muller J, Schmidt R, Wunsch J, Barthelmes F, Kusche J (2009) Significance of secular trends of mass variations determined from GRACE solutions. J Geodyn 48(3–5): 157–165. doi:10.1016/j.jog.2009.09.029

    Article  Google Scholar 

  • Suito H, Freymueller JT (2009) A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J Geophys Res Solid Earth 114(B11404): 23. doi:10.1029/2008jb005954

    Google Scholar 

  • Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth 113(B08410): 12. doi:10.1029/2007jb005338

    Google Scholar 

  • Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity. J Geophys Res Solid Earth 107(B9): 13. doi:10.1029/2001jb000576

    Google Scholar 

  • Swenson SC, Milly PCD (2006) Climate model biases in seasonality of continental water storage revealed by satellite gravimetry. Water Resour Res 42(W03201): 7. doi:10.1029/2005wr004628

    Google Scholar 

  • Tanaka Y, Klemann V, Fleming K, Martinec Z (2009) Spectral finite element approach to postseismic deformation in a viscoelastic self-gravitating spherical Earth. Geophys J Int 176(3): 715–739. doi:10.1111/j.1365-246X.2008.04015.x

    Article  Google Scholar 

  • Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02—an improved Earth gravity field model from GRACE. J Geod 79(8): 467–478. doi:10.1007/s00190-005-0480-z

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31(9): L09607. doi:10.1029/2004gl019920

    Article  Google Scholar 

  • Tillman FD, Cordova JT, Leake SA, Thomas BE, Callegary JB (2011) Water availability and use pilot; methods development for a regional assessment of groundwater availability, southwest alluvial basins, Arizona: U.S. Geological Survey Scientific Investigations Report 2011-5071

  • Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36(L18401): 5. doi:10.1029/2009gl039401

    Google Scholar 

  • Tregoning P, Ramillien G, McQueen H, Zwartz D (2009) Glacial isostatic adjustment and nonstationary signals observed by GRACE. J Geophys Res Solid Earth 114(B06406): 10. doi:10.1029/2008jb006161

    Google Scholar 

  • van den Broeke M, Bamber J, Ettema J, Rignot E, Schrama E, van de Berg WJ, van Meijgaard E, Velicogna I, Wouters B (2009) Partitioning recent greenland mass loss. Science 326(5955): 984–986. doi:10.1126/science.1178176

    Article  Google Scholar 

  • van der Wal W, Wu P, Sideris MG, Shum CK (2008) Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America. J Geodyn 46(3–5): 144–154. doi:10.1016/j.jog.2008.03.007

    Google Scholar 

  • Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36: 4. doi:10.1029/2009gl040222

    Article  Google Scholar 

  • Veronneau M, Duval R, Huang J (2006) A gravimetric geoid model as a vertical datum in Canada. Geomatica 60(2): 165–172

    Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrogical and oceanic effects and their possible detection using Grace. J Geophys Res 103(B12): 30,205–230,229

    Article  Google Scholar 

  • Wahr J, Swenson S, Velicogna I (2006) Accuracy of GRACE mass estimates. Geophys Res Lett 33(L06401): 5. doi:10.1029/2005gl025305

    Google Scholar 

  • Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31: L11501. doi:10.1029/2004GL019779

    Article  Google Scholar 

  • Wald DJ, Heaton TH (1994) Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull Seismol Soc Amer 84(3): 668–691

    Google Scholar 

  • Wang GL (2005) Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Clim Dyn 25(7–8): 739–753. doi:10.1007/s00382-005-0057-9

    Article  Google Scholar 

  • Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California: U.S. Geological Survey Professional Paper 1401-D

  • Willis JK, Chambers DP, Kuo CY, Shum CK (2010) Global sea level rise recent progress and challenges for the decade to come. Oceanography 23(4): 26–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, T., Wahr, J., Gross, R. et al. Estimating geoid height change in North America: past, present and future. J Geod 86, 337–358 (2012). https://doi.org/10.1007/s00190-011-0522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-011-0522-7

Keywords

Navigation