Skip to main content
Log in

Comparative assessment of linear and bilinear prism-based strategies for terrain correction computations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We address the evaluation of the potential and of the gravitational attraction of mass distributions, assigned by means of a Digital Terrain Model (DTM), for terrain correction computations. In particular, we improve a recent analytical formulation based on the approximation of topographic masses by vertical prisms with linear top surfaces and compare the computational features of the enhanced formulation with alternative ones based on polyhedral modeling on bilinear approximation of the surface relief or on numerical approaches. The numerical tests carried out on the DTM of an area near Cassino (Italy) proved that the proposed enhanced analytical formulation, besides providing exact values of the potential and of the gravitational attraction, turns out to be faster than alternative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banerjee B, DasGupta SP (1977) Gravitational attraction of a rectangular parallelepiped. Geophysics 42:1053–1055

    Article  Google Scholar 

  • Barnett CT (1976) Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics 41:1353–1364

    Article  Google Scholar 

  • Benedek J (2004) The application of polyhedron volume element in the calculation of gravity related quantities. In: Meurers B (ed) Proceedings of the 1st workshop on international gravity field research, Graz 2003, special issue of Österreichische Beiträge zu Meteorologie und Geophysik, Heft 31:99–106

  • Blais JA, Ferland R (1983) Optimization in gravimetric terrain corrections. Can J Earth Sci 21:505–515

    Article  Google Scholar 

  • D’Urso MG, Russo P (2002) A new algorithm for point-in polygon test. Surv Rev 284:410–422

    Article  Google Scholar 

  • D’Urso MG (2012) New expressions of the gravitational potential and its derivates for the prism. In: Sneeuw N, Novák P, Crespi M, Sansò F (eds) VII Hotine-Marussi international symposium on mathematical geodesy. Springer, Berlin

    Google Scholar 

  • D’Urso MG (2013a) On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J Geo 87:239–252

    Article  Google Scholar 

  • D’Urso MG (2013b) A remark on the computation of the gravitational potential of masses with linearly varying density. In: Crespi M, Sansò F (eds) VIII Hotine-Marussi international symposium. Springer, Berlin

    Google Scholar 

  • D’Urso MG, Marmo F (2013c) Vertical stress distribution in isotropic half-spaces due to surface vertical loadings acting over polygonal domains. Zeit Ang Math Mech. doi:10.1002/zamm.201300034

  • D’Urso MG, Marmo F (2013d) On a generalized Love’s problem. Comp Geo 61:144–151

    Article  Google Scholar 

  • D’Urso MG (2014a) Analytical computation of gravity effects for polyhedral bodies. J Geo 88:13–29

    Article  Google Scholar 

  • D’Urso MG (2014b) Gravity effects of polyhedral bodies with linearly varying density. Cel Mech Dyn Astr(DOI) doi:10.1007/s10569-014-9578-z

  • Forsberg R (1985) Gravity field terrain effect computations by FFT. Bull Géod 59:342–360

    Article  Google Scholar 

  • Götze HJ (1978) Ein numerisches Verfahren zur Berechnung der gravimetrischen Feldgrößen drei-dimensionaler Modellkörper. Arch Met Geophys Biokl Ser A 25:195–215

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco

    Google Scholar 

  • Hoffmann CM (2002) Geometric and solid modeling. http://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html

  • Holstein H (2002) Gravimagnetic similarity in anomaly formulas for uniform polyhedra. Geophysics 67:1126–1133

    Article  Google Scholar 

  • Hwang C, Wang CG, Hsiao YS (2003) Terrain correction computation using Gaussian quadrature. Comp Geosci 29:1259–1268

    Article  Google Scholar 

  • Jiancheng H, Wenbin S (2010) Comparative study on two methods for calculating the gravitational potential of a prism. Geo Spat Inf Sci 13:60–64

    Article  Google Scholar 

  • Kellogg OD (1929) Foundations of potential theory. Springer, Berlin

    Book  Google Scholar 

  • Martinec Z, Vanictk P, Mainville A, Vtronneau M (1996) Evaluation of topographical effects in precise geoid computation from densely sampled heights. J Geo 70:746–754

    Article  Google Scholar 

  • MacMillan WD (1930) Theoretical mechanics, vol. 2: the theory of the potential. Mc-Graw-Hill, New York

    Google Scholar 

  • Mader K (1951) Das Newtonsche Ravmpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. Öesterr Z Vermess Sonderheft 11

  • Mathematica version 9.0.1.0 (2013) Wolfram Research Inc., Champaign, Illinois

  • Matlab version 7.10.0 (2012) The MathWorks Inc., Natick, Massachusetts

  • Nagy D (1966) The gravitational attraction of a right rectangular prism. Geophysics 31:362–371

    Article  Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geo 74:553–560

    Google Scholar 

  • Okabe M (1979) Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translation into magnetic anomalies. Geophysics 44:730–741

    Article  Google Scholar 

  • Paul MK (1974) The gravity effect of a homogeneous polyhedron for three-dimensional interpretation. Pure Appl Geophys 112:553–561

  • Petrović S (1996) Determination of the potential of homogeneous polyhedral bodies using line integrals. J Geo 71:44–52

    Article  Google Scholar 

  • Pohanka V (1988) Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys Prospect 36:733–751

    Article  Google Scholar 

  • Pohanka V (1998) Optimum expression for computation of the gravity field of a polyhedral body with linearly increasing density. Geophys Prospect 46:391–404

    Article  Google Scholar 

  • Rosati L, Marmo F (2014) Closed-form expressions of the thermo-mechanical fields induced by a uniform heat source acting over an isotropic half-space. Int J Heat Mass Trans 75:272–283

    Article  Google Scholar 

  • Sessa S, D’Urso MG (2013) Employment of Bayesian networks for risk assessment of excavation processes in dense urban areas Proceedings 11th international conference ICOSSAR 2013:30163–30169

  • Sideris MG (1985) A fast Fourier transform method for computing terrain corrections. Manuscr Geod 10:66–73

    Google Scholar 

  • Smith DA (2000) The gravitational attraction of any polygonally shaped vertical prism with inclined top and bottom faces. J Geo 74:414–420

    Article  Google Scholar 

  • Tang KT (2006) Mathematical methods for engineers and scientists. Springer, Berlin

    Google Scholar 

  • Tsoulis D (2000) A note on the gravitational field of the right rectangular prism. Boll Geo Sci Aff LIX–1:21–35

    Google Scholar 

  • Tsoulis D (2001) Terrain correction computations for a densely sampled DTM in the Bavarian Alps. J Geo 75:291–307

    Article  Google Scholar 

  • Tsoulis D, Wziontek H, Petrović (2003) A bilinear approximation of the surface relief in terrain correction computations. J Geo 77:338–344

    Article  Google Scholar 

  • Waldvogel J (1979) The Newtonian potential of homogeneous polyhedra. J Appl Math Phys 30:388–398

    Article  Google Scholar 

  • Werner RA (1994) The gravitational potential of a homogeneous polyhedron. Celest Mech Dynam Astr 59:253–278

    Article  Google Scholar 

  • Werner RA, Scheeres DJ (1997) Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest Mech Dynam Astr 65:313–344

    Google Scholar 

  • Woodward DJ (1997) The gravitational attraction of vertical triangular prisms. Geophys Prospect 23:526–532

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their deep gratitude to the Editor-in-Chief, prof. Roland Klees, and to the three anonymous reviewers for careful suggestions and useful comments which resulted in an improved version of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. D’Urso.

Appendices

Appendix 1

Aim of this appendix is to analytically compute the integral

$$\begin{aligned} I_{ln}= \int \limits _{x_1}^{x_2}\ln [wx+e+\sqrt{ax^2+bx+c}]dx \quad a>0 \end{aligned}$$
(81)

The idea of computing \(I_{ln}\) using a software of symbolic mathematics cannot be pursued since the resulting expression, as already shown by Smith (2000), is rather cumbersome. For this reason we set

$$\begin{aligned} \sqrt{ax^2+bx+c}=\sqrt{a}(t-x) \end{aligned}$$
(82)

what yields

$$\begin{aligned} x=\frac{at^2-c}{b+2at} \end{aligned}$$
(83)

and

$$\begin{aligned} \sqrt{ax^2+bx+c}=\sqrt{a}\frac{at^2+bt+c}{b+2at} \end{aligned}$$
(84)

Thus, from (83), the differentials of \(x\) and \(t\) are related by

$$\begin{aligned} dx=\frac{2a(at^2+bt+c)}{(b+2at)^2}dt \end{aligned}$$
(85)

Setting

$$\begin{aligned}&\hat{f} = a (w+\sqrt{a}) \nonumber \\&\hat{g} = 2ae +\sqrt{a} b \\&\hat{h} = (\sqrt{a}-w)c + be\nonumber \end{aligned}$$
(86)

we have

$$\begin{aligned} I_{ln}= 2a \int \limits _{t_1}^{t_2}\ln \left[ \frac{\hat{f} t^2 + \hat{g} t + \hat{h}}{b+2at}\right] \frac{at^2+bt+c}{(b+2at)^2} dt \end{aligned}$$
(87)

where

$$\begin{aligned} t_i= \sqrt{ \frac{ax_i^2+bx_i+c}{a} } +x_i \qquad (i=1,2) \end{aligned}$$
(88)

on account of (82).

The expression (87) can be further simplified by setting

$$\begin{aligned} y= b+2at \end{aligned}$$
(89)

what yields, after some manipulation,

$$\begin{aligned} I_{ln}= \frac{1}{4a^2} \int \limits _{y_1}^{y_2}\ln \left[ \frac{\hat{f} y^2 + \hat{p} y + \hat{q}}{4a^2y}\right] \frac{ay^2+\hat{r}}{y^2} dy \end{aligned}$$
(90)

having set \(y_i = b+2at_i\) and

$$\begin{aligned}&\hat{p} = 2a \hat{g} - 2b \hat{f} \nonumber \\&\hat{q} = \hat{f} b^2 -2ab \hat{g} + 4 a^2 \hat{h} \\&\hat{r} = 4 a^2 c - a b^2\nonumber \end{aligned}$$
(91)

The integral (90) has been computed using Mathematica 2013. In particular setting

$$\begin{aligned}&\varDelta = \sqrt{4\hat{f} \hat{q} - \hat{p}^2} \qquad \varGamma (y)=\hat{f} y^2 + \hat{p} y + \hat{q} \nonumber \\&LN(y) = \displaystyle { \ln \frac{\hat{f} y^2 + \hat{p} y + \hat{q}}{4a^2 y} } \nonumber \\&ATN(y) = \displaystyle {\arctan \frac{2\hat{f} y + \hat{p}}{\varDelta } } \end{aligned}$$
(92)

one has

$$\begin{aligned} I_{ln}&= \displaystyle {\frac{1}{4a^2} \Bigl \{ \Bigl (\frac{a}{\hat{f}}+\frac{\hat{r}}{\hat{q}}\Bigr )\varDelta [ATN(y_2)-ATN(y_1)] \Bigr . } \nonumber \\&\quad +\,\displaystyle { \hat{r}\frac{\hat{p}}{\hat{q}}\ln \frac{y_2}{y_1} + \Bigl (\frac{a\hat{p}}{2\hat{f}}-\frac{\hat{r}\hat{p}}{2\hat{q}}\Bigr ) \ln \frac{\varGamma (y_2)}{\varGamma (y_1)} } \nonumber \\&\quad +\, \displaystyle { \Bigl (\frac{\hat{r}}{y_2}-ay_2\Bigr ) [1-LN(y_2)] } \nonumber \\&\quad -\, \Bigl . \displaystyle { \Bigl (\frac{\hat{r}}{y_1}-ay_1\Bigr )[1-LN(y_1)] }\Bigr \} \end{aligned}$$
(93)

which has a considerably simpler expression than the one reported in Smith (2000).

Appendix 2

Aim of this appendix is to provide an explicit evaluation of the integral \(K_{\varLambda _1 a}\) in (32) and the analogous one for \(\varLambda _2\). To fix the ideas we shall make reference to a generic triangle \(\varLambda \) by writing

$$\begin{aligned} K_{\varLambda a}=\displaystyle { \sum \limits _{j=1}^{3} ({\varvec{\rho }}_j\cdot {\varvec{\nu }}_j) \int \limits _{{l}_{j}}\ln [\psi ({\varvec{\rho }}(s_j),k) ] ds_j } \end{aligned}$$
(94)

where \(\psi ({\varvec{\rho }}(s_j),k)\) denotes the value of the function (12) evaluated at the curvilinear abscissa \(s_j\) spanning the \(j\)-th edge.

Setting \(\lambda _j=s_j/l_j\) the previous expression can also be written as

$$\begin{aligned} K_{\varLambda a}=\displaystyle { \sum \limits _{j=1}^{3} ({\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp ) \int _{0}^{1}\ln [\psi ({\varvec{\rho }}(\lambda _j),k) ] d\lambda _j } \end{aligned}$$
(95)

where \({\varvec{\rho }}_j\) and \({\varvec{\rho }}_{j+1}^\perp \) are defined in (59).

Adopting in the previous integral the parameterization (58) for the \(j\)-th edge one has

$$\begin{aligned} \chi ({\varvec{\rho }}(\lambda _j),k) = a_j \lambda _j^2 + 2b_j\lambda _j + c_j \end{aligned}$$
(96)

and

$$\begin{aligned} {\mathbf g}\cdot {\varvec{\rho }}(\lambda _j)+k = d_j\lambda _j + e_j \end{aligned}$$
(97)

where it has been set

$$\begin{aligned}&a_j = ({\varvec{\rho }}_{j+1}-{\varvec{\rho }}_j)\cdot ({\varvec{\rho }}_{j+1}-{\varvec{\rho }}_j) + d_j^2 \nonumber \\&b_j = {\varvec{\rho }}_j\cdot ({\varvec{\rho }}_{j+1}-{\varvec{\rho }}_j) + d_je_j \nonumber \\&c_j = {\varvec{\rho }}_j\cdot {\varvec{\rho }}_j + e_j^2 \\&d_j = {\mathbf g}\cdot ({\varvec{\rho }}_{j+1}-{\varvec{\rho }}_j) \nonumber \\&e_j = {\mathbf g}\cdot {\varvec{\rho }}_j + k\nonumber \end{aligned}$$
(98)

Thus, the integral (95) becomes

$$\begin{aligned} K_{\varLambda a}=\displaystyle { \sum \limits _{j=1}^{3} ({\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp ) LN_{ja} } \end{aligned}$$
(99)

where it has been set

$$\begin{aligned} LN_{ja} =\displaystyle { \int _0^1 \ln [d_j\lambda _j+e_j + \sqrt{a_j\lambda _j^2 + 2b_j \lambda _j+c_j} ] d\lambda _j } \end{aligned}$$
(100)

In this way, we are finally led to compute an integral of the kind addressed in the Appendix 1.

To compute \(K_{\varLambda b}\) in (33) and correctly take into account the singularities which can affect its evaluation we observe that, similarly to (99), we can write for a generic triangle \(\varLambda \)

$$\begin{aligned} K_{\varLambda b}=\displaystyle { \sum \limits _{j=1}^{3} ({\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp ) LN_{jb} } \end{aligned}$$
(101)

where

$$\begin{aligned} LN_{jb} =\displaystyle { \int _0^1 \ln [\sqrt{\bar{a}_j\lambda _j^2 + 2\bar{b}_j\lambda _j+\bar{c}_j} ] d\lambda _j } \end{aligned}$$
(102)

and \(\bar{a}_j\), \(\bar{b}_j\) and \(\bar{c}_j\) are defined in (60). Actually \(d_j=e_j=0\) in (98) due to the fact that now \({\mathbf g}={\mathbf o}\) and \(k=0\).

It is simpler and computationally more effective to directly evaluate (102) rather than applying formula (81). To this end, setting

$$\begin{aligned} LN1_{j}&= \ln \,(\bar{a}_j+2\bar{b}_j+\bar{c}_j) \nonumber \\ LN2_{j}&= \ln \,\bar{c}_j\end{aligned}$$
(103)

and

$$\begin{aligned} ATN1_{j}&= \displaystyle { \arctan \frac{\bar{a}_j+\bar{b}_j}{\sqrt{\bar{a}_j\bar{c}_j-\bar{b}_j^2}} } \nonumber \\ ATN2_{j}&= \displaystyle { \arctan \frac{\bar{b}_j}{\sqrt{\bar{a}_j\bar{c}_j-\bar{b}_j^2}} } \end{aligned}$$
(104)

we finally have

$$\begin{aligned} LN_{jb}&= \displaystyle { -1 + \sqrt{\bar{a}_j\bar{c}_j-\bar{b}_j^2} (ATN1_{j}-ATN2_{j}) } \nonumber \\&\quad +\, \displaystyle { LN1_{j}+ \frac{\bar{b}_j}{\bar{a}_j} (LN1_{j}-LN2_{j}) } \end{aligned}$$
(105)

The previous expressions are certainly well defined on account of (64) and of the further property

$$\begin{aligned} \sqrt{\bar{a}_j\bar{c}_j-\bar{b}_j^2}&= ({\varvec{\rho }}_{j+1}\cdot {\varvec{\rho }}_{j+1})({\varvec{\rho }}_j\cdot {\varvec{\rho }}_j)-({\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1})^2 \nonumber \\&= ({\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp )^2 \end{aligned}$$
(106)

Hence \(LN1_{j}\) (\(LN2_{j}\)) in (103) becomes infinite if \({\varvec{\rho }}_{j+1}={\mathbf o}\) (\({\varvec{\rho }}_j={\mathbf o}\)) since \(\bar{a}_j+2\bar{b}_j+\bar{c}_j=0\) (\(\bar{c}_j=0\)) in this case.

However, this produces no consequences from the practical point of view since \(LN_{jb}\) in (105) is scaled by \({\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp \) in the expression (101) of \(K_{\varLambda b}\). Actually, recalling (65), the computation of \(LN1_i\) (\(LN2_i\)) can be skipped when \({\varvec{\rho }}_{i+1}={\mathbf o}\) (\({\varvec{\rho }}_{i}={\mathbf o}\)).

Analogously, should \(\bar{a}_j\bar{c}_j-\bar{b}_j^2=0\), the quantities \(ATN1_j\) and \(ATN2_j\) would become numerically undefined but, in fact, their evaluation can be skipped since both of them are factored by the null quantity \({\varvec{\rho }}_j\cdot {\varvec{\rho }}_{j+1}^\perp \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Urso, M.G., Trotta, S. Comparative assessment of linear and bilinear prism-based strategies for terrain correction computations. J Geod 89, 199–215 (2015). https://doi.org/10.1007/s00190-014-0770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-014-0770-4

Keywords

Navigation