Skip to main content
Log in

The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques

  • Review
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We review the measurement of the mean dynamic topography (MDT) of the Mediterranean using ellipsoidal heights of sea level at discrete tide gauge locations, and across the entire basin using satellite altimetry, subtracting estimates of the geoid obtained from recent models. This ‘geodetic approach’ to the determination of the MDT can be compared to the independent ‘ocean approach’ that involves the use of in situ oceanographic measurements and ocean modelling. We demonstrate that with modern geoid and ocean models there is an encouraging level of consistency between the two sets of MDTs. In addition, we show how important geodetic MDT information can be in judging between existing global ocean circulation models, and in providing insight for the development of new ones. The review makes clear the major limitations in Mediterranean data sets that prevent a more complete validation, including the need for improved geoid models of high spatial resolution and accuracy. Suggestions are made on how a greater amount of reliable geo-located tide gauge information can be obtained in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the International Terrestrial Reference Frame. J Geod 85:457–473. doi:10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Andersen OB, Knudsen P (2009) DNSC08 mean sea surface and mean dynamic topography models. J Geophys Res 114:C11001. doi:10.1029/2008JC005179

    Article  Google Scholar 

  • Baker TF, Woodworth PL, Blewitt G, Boucher C, Wöppelmann G (1997) A European network for sea level and coastal land level monitoring. J Marine Syst 13:163–171. doi:10.1016/S0924-7963(96)00118-2

    Article  Google Scholar 

  • Barzaghi R, Tselfes N, Tziavos IN, Vergos GS (2011) Geoid and high resolution sea surface topography modelling in the Mediterranean from gravimetry, altimetry and GOCE data: evaluation by simulation. J Geod 83:751–772. doi:10.1007/s00190-008-0292-z

    Article  Google Scholar 

  • Becker M, Zerbini S, Baker T, Bürki B, Galanis J, Garate J, Georgiev I, Kahle HG, Kotzev V, Lobazov V, Marson I, Negusini M, Richter B, Veis G, Yuzefovich P (2002) Assessment of height variations by GPS at Mediterranean and Black Sea coast tide gauges from the SELF projects. Glob Planet Change 34:5–35. doi:10.1016/S0921-8181(02)00103-0

    Article  Google Scholar 

  • Becker S, Brockmann JM, Schuh W-D (2014) Mean dynamic topography estimates purely based on GOCE gravity field models and altimetry. Geophys Res Lett 41:2063–2069. doi:10.1002/2014GL059510

    Article  Google Scholar 

  • Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi:10.1029/2010GL045633

    Article  Google Scholar 

  • Bingham RJ, Haines K, Lea DJ (2014) How well can we measure the ocean’s mean dynamic topography from space? J Geophys Res Oceans 119:3336–3356. doi:10.1002/2013JC009354

    Article  Google Scholar 

  • Bonnefond P, Exertier P, Laurain O, Thibaut P, Mercier F (2013) GPS-based sea level measurements to help the characterization of land contamination in coastal areas. Adv Space Res 51:1383–1399. doi:10.1016/j.asr.2012.07.007

    Article  Google Scholar 

  • Bruinsma SL, Förste C, Abrikosov O, Lemoine J-M, Marty J-C, Mulet S, Rio M-H, Bonvalot S (2014) ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophys Res Lett 41:7508–7514. doi:10.1002/2014GL062045

    Article  Google Scholar 

  • Calafat FM, Gomis D (2009) Reconstruction of Mediterranean sea level fields for the period 1945–2000. Glob Planet Change 66:225–234. doi:10.1016/j.gloplacha.2008.12.015

    Article  Google Scholar 

  • Criado-Aldeanueva F, Soto-Navarro FJ, García-Lafuente J (2012) Seasonal and interannual variability of surface heat and freshwater fluxes in the Mediterranean Sea: budgets and exchange through the Strait of Gibraltar. Int J Climatol 32:286–302. doi:10.1002/joc.2268

    Article  Google Scholar 

  • Dobricic S (2005) New mean dynamic topography of the Mediterranean calculated from assimilation system diagnostics. Geophys Res Lett 32:L11606. doi:10.1029/2005GL022518

    Article  Google Scholar 

  • ESA (2010) GOCE High Level Processing Facility. GOCE Level 2 Product Data Handbook. European Space Agency Document GO-MA-HPF-GS-0110. https://earth.esa.int/c/document_library/

  • Farmer DM, Armi L (1988) The flow of Atlantic water through the Strait of Gibraltar, and the flow of Mediterranean water through the Strait of Gibraltar. Prog Oceanogr 21:1–103. doi:10.1016/0079-6611(88)90055-9

    Article  Google Scholar 

  • Featherstone WE, Filmer MS (2012) The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography. J Geophys Res 117:C08035. doi:10.1029/2012JC007974

    Google Scholar 

  • Fecher T, Pail R, Gruber T (2013) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Obs 35 A:120–127. doi:10.1016/j.jag.2013.10.005

  • Fenoglio L (1996) Sea surface determination with respect to European vertical datums. PhD Thesis, Deutsche Geodaetische Kommission, C, 464, Munich, Germany

  • Fenoglio-Marc L (2001) Analysis and representation of regional sea-level variability from altimetry and atmospheric-oceanic data. Geophys J Int 145:1–18. doi:10.1046/j.1365-246x.2001.00284.x

    Article  Google Scholar 

  • Filmer MS (2014) Using models of the ocean’s mean dynamic topography to identify errors in coastal geodetic levelling. Marine Geod 37:47–64. doi:10.1080/01490419.2013.868383

    Article  Google Scholar 

  • Gilardoni M, Albertella A, Reguzzoni M (2014) The MEGG-C project: mean dynamic topography in the Mediterranean Sea based on GOCE data and Wiener filters. In: Presentation at the fifth international GOCE user workshop, UNESCO, Paris, 25–28 November 2014

  • Gruber T, Visser PNAM, Ackermann C, Hosse M (2011) Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J Geod 85:845–860. doi:10.1007/s00190-011-0486-7

    Article  Google Scholar 

  • Gruber T (2014) GOCE gravity field models—overview and performance analysis. In: Presentation at the fifth international GOCE user workshop, UNESCO, Paris, 25–28 November 2014. http://www.iapg.bgu.tum.de/mediadb/7180108/7180109/20141125_Gruber_GOCE_Models.pdf

  • Higginson S (2012) Mapping and understanding the mean surface circulation of the North Atlantic: insights from new geodetic and oceanographic measurements. Unpublished PhD thesis, Dalhousie University. http://dalspace.library.dal.ca/handle/10222/14866

  • Higginson S, Thompson KR, Woodworth PL, Hughes CW (2015) The tilt of mean sea level along the east coast of North America. Geophys Res Lett 42:1471–1479. doi:10.1002/2015GL063186

  • Hirt C, Fecher T, Claessens SJ, Kuhn M, Pail R, Rexer M (2013) New ultra-high resolution picture of Earth’s gravity field. Geophys Res Lett 40:4279–4283. doi:10.1002/grl.50838

    Article  Google Scholar 

  • Hughes CW, Bingham RJ, Roussenov V, Williams J, Woodworth PL (2015) The effect of Mediterranean exchange flow on European time-mean sea level. Geophys Res Lett 42:466–474. doi:10.1002/2014GL062654

  • Intergovernmental Oceanographic Commission (2006) Manual on sea-level measurement and interpretation. An update to 2006, vol 4. Intergovernmental Oceanographic Commission, Manuals and Guides, 14, Paris

  • Intergovernmental Oceanographic Commission (2012) Global Sea Level Observing System (GLOSS): Implementation plan 2012. Intergovernmental Oceanographic Commission. Technical Series, 100, Paris

  • Jordi A, Wang DP (2009) Mean dynamic topography and eddy kinetic energy in the Mediterranean Sea: comparison between altimetry and a 1/16 degree ocean circulation model. Ocean Modell 29:137–146. doi:10.1016/j.ocemod.2009.04.001

    Article  Google Scholar 

  • Kiliçoğlu A, Direnç A, Yildiz H, Bölme M, Aktuğ B, Simav M, Lenk O (2011) Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09). Stud Geophys Geod 55:557–578. doi:10.1007/s11200-010-9023-z. (See also http://www.hgk.msb.gov.tr/english/turkish-geoid.php)

  • Kistler R, Collins C, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50 year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Knudsen P, Bingham R, Andersen O, Rio M-H (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geod 85:861–879. doi:10.1007/s00190-011-0485-8

    Article  Google Scholar 

  • Levallois JJ, Maillard J (1970) The new French 1\(^{st}\) order levelling net—practical and scientific consequences. In: Report of the symposium on coastal geodesy, Munich, pp 300–330

  • Lisitzin E (1974) Sea-level changes. Elsevier, Amsterdam

    Google Scholar 

  • Mayer-Gürr T, Rieser D, Höck E, Brockmann JM, Schuh WD, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. In: Abstract submitted to the international symposium on gravity, geoid and height systems, Venice, Italy, 9–12 October 2012

  • Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys Res Lett 37:L20314. doi:10.1029/2010GL044906

    Article  Google Scholar 

  • Pail R, 15 others (2011) First GOCE gravity field models derived by three different approaches. J Geod 85:819–843. doi:10.1007/s00190-011-0467-x

  • Pail R (2013) Global gravity field models and their use in Earth System Research. In: Krisp JM, Meng L, Pail R, Stilla U (eds) Earth observation of global changes (EOGC). Springer, Berlin, pp 3–20

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117:B4. doi:10.1029/2011JB008916

    Google Scholar 

  • Pinardi N, Masetti E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Palaeogeogr Palaeoclimatol Palaeoecol 158:153–173. doi:10.1016/S0031-0182(00)00048-1

    Article  Google Scholar 

  • Poulain PM, Menna M, Mauri E (2012) Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J Phys Oceanogr 42:973–990. doi:10.1175/JPO-D-11-0159.1

  • Rio M-H, Poulain PM, Pascual A, Mauri E, Larnicol G, Santoleri R (2007) A mean dynamic topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model. J Marine Syst 65:484–508. doi:10.1016/j.jmarsys.2005.02.006

  • Rio M-H, Pascual A, Poulain PM, Menna M, Barceló B, Tintoré J (2014a) Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci 10:731–744. doi:10.5194/os-10-731-2014

  • Rio M-H, Mulet S, Picot N (2014b) Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys Res Lett 41: doi:10.1002/2014GL061773

  • Ross T, Garrett C, Le Traon P-Y (2000) Western Mediterranean sea-level rise: changing exchange flow through the Strait of Gibraltar. Geophys Res Lett 27:2949–2952. doi:10.1029/2000GL011653

    Article  Google Scholar 

  • Rummel R (2012) Height unification using GOCE. J Geod Sci 2(4):355–362. doi:10.2478/v10156-011-0047-2

    Google Scholar 

  • Santamaría-Gómez A, Gravelle M, Collilieux X, Guichard M, Míguez BM, Tiphaneau P, Wöppelmann G (2012) Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Glob Planet Change 98–99:6–17. doi:10.1016/j.gloplacha.2012.07.007

    Article  Google Scholar 

  • Schaeffer P, Faugére Y, Legeais JF, Ollivier A, Guinle T, Picot N (2012) The CNES\_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Marine Geod 35(S1):3–19. doi:10.1080/01490419.2012.718231

    Article  Google Scholar 

  • Slobbe DC, Simons FJ, Klees R (2012) The spherical Slepian basis as a means to obtain spectral consistency between mean sea level and the geoid. J Geod 86:609–628. doi:10.1007/s00190-012-0543-x

    Article  Google Scholar 

  • Tsimplis MN, Shaw AGP, Pascual A, Marcos M, Pasaric M, Fenoglio-Marc L (2008) Can we reconstruct the 20th century sea level variability in the Mediterranean sea on the basis of recent altimetric measurements? In: Barale V, Gade M (eds) Remote sensing of the European seas (eds). Springer Science+Business Media B.V., Berlin, pp 307–318

  • Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) (2011) Coastal altimetry. Springer, Berlin

  • Woodworth PL, Rickards LJ, Pérez B (2009) A survey of European sea level infrastructure. Nat Hazards Earth Syst Sci 9:927–934. http://www.nat-hazards-earth-syst-sci.net/9/927/2009/

  • Woodworth PL, Hughes CW, Bingham RJ, Gruber T (2012) Towards worldwide height system unification using ocean information. J Geod Sci 2(4):302–318. doi:10.2478/v10156-012-004-8

    Google Scholar 

Download references

Acknowledgments

We thank the tide gauge and GPS specialists listed in Table 2 for their help in obtaining GPS survey information. MSL data were obtained from the Permanent Service for Mean Sea Level, while some of the GPS data we have used were obtained via the SONEL data assembly centre at the University of La Rochelle. MSL and GPS data are only available thanks to the institutions which contribute their data freely for research. The altimeter products were produced by Ssalto/Duacs and the CLS Space Oceanography Division, made available through AVISO, and by the Technical University of Denmark. We are also grateful to Thomas Gruber (Technical University of Munich) for the geoid models. We thank Marie-Hélène Rio (CLS, France), Luciana Fenoglio-Marc (University of Darmstadt) and Ole Andersen (Technical University of Denmark) for discussions on these topics. This work was funded partly by the European Space Agency and the UK Natural Environment Research Council. M. Marcos acknowledges a “Ramon y Cajal” contract funded by the Spanish Ministry of Economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip L. Woodworth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodworth, P.L., Gravelle, M., Marcos, M. et al. The status of measurement of the Mediterranean mean dynamic topography by geodetic techniques. J Geod 89, 811–827 (2015). https://doi.org/10.1007/s00190-015-0817-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0817-1

Keywords

Navigation