Skip to main content
Log in

GNSS integer ambiguity validation based on posterior probability

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

GNSS integer ambiguity validation is considered to be a challenge task for decades. Several kinds of validation tests are developed and widely used in these years, but theoretical basis is their weakness. Ambiguity validation theoretically is an issue of hypothesis test. In the frame of Bayesian hypothesis testing, posterior probability is the canonical standard that statistical decision should be based on. In this contribution, (i) we derive the posterior probability of the fixed ambiguity based on the Bayesian principle and modify it for practice ambiguity validation. (ii) The optimal property of the posterior probability test is proved based on an extended Neyman–Pearson lemma. Since validation failure rate is the issue users most concerned about, (iii) we derive the failure rate upper bound of the posterior probability test, so the user can use the posterior probability test either in the fixed posterior probability or in the fixed failure rate way. Simulated as well as real observed data are used for experimental validations. The results show that (i) the posterior probability test is the most effective within the R-ratio test, difference test, ellipsoidal integer aperture test and posterior probability test, (ii) the posterior probability test is computational efficient and (iii) the failure rate estimation for posterior probability test is useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Betti B, Crespi M, Sanso F (1993) A geometirc illustration of ambiguity resolution in GPS theory and a Bayesian approach. Manuscr Geod 18:317–330

    Google Scholar 

  • Euler HJ, Schaffrin B (1991) On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. Kinemat Syst Geod Survey Remote Sens. Springer New York 1991:285–295

    Article  Google Scholar 

  • de Lacy MC, Sanso F, Rodriguez-Caderot G et al (2002) The Bayesian approach applied to GPS ambiguity resolution. A mixture model for the discrete-real ambiguities alternative. J Geod 76(2):82–94

    Article  Google Scholar 

  • Frei E, Beulter G (1990) Rapid static positioning based on the fast ambiguity resolution approach ‘FARA’: theory and first results. Manuscr Geod 15(6):326–356

    Google Scholar 

  • Gundlich B, Koch KR (2002) Confidence regions for GPS baseline by Bayesians statistics. J Geod 76(1):55–62

    Article  Google Scholar 

  • Han S (1997) Quality control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. J Geod 71(6):351–361

    Article  Google Scholar 

  • Han S and Rizos C (1996) Integrated methods for instantaneous ambiguity resolution using new-generation GPS receivers. Proc. of IEEE PLANS’96, Atlanta GA: 245–261

  • Hassibi A, Boyed S (1998) Integer parameter estimation in linear models with applications to GPS. IEEE Trans Signal Proc 46:2938–2952

    Article  Google Scholar 

  • Ji S, Chen W, Ding X et al (2010) Ambiguity validation with combined ratio test and ellipsoidal integer aperture estimator. J Geod 84(10):597–604

    Article  Google Scholar 

  • Koch KR (1990) Bayesian inference with geodetic applications. Berlin Springer Verlag, 31

  • Leick A (2003) GPS satellite surveying, 3rd edn. Wiley, New York

    Google Scholar 

  • Taha H (1975) Integer programming-theory, applications, and computations. Academic Press, New York

    Google Scholar 

  • Teunissen JPG (1993) Least squares estimation of integer GPS ambiguities. In: Invited lecture, Sect. IV theory and methodology, IAG General Meeting, Beijing

  • Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1–2):65–82

    Article  Google Scholar 

  • Teunissen PJG (2001) Integer estimation in the presence of biases. J Geod 75:399–407

    Article  Google Scholar 

  • Teunissen PJG (2003) Integer aperture GNSS ambiguity resolution. Artif Satell 38(3):79–88

    Google Scholar 

  • Teunissen PJG (2005a) A carrier phase ambiguity estimator with easy-to evaluate fail-rate. Artif Satell 38(3):89–96

    Google Scholar 

  • Teunissen PJG (2005) GNSS ambiguity resolution with optimally controlled failure-rate. Artif Satell 40(4):219–227

  • Teunissen PJG, Verhagen S (2009) The GNSS ambiguity ratio-test revisited: a better way of using it. Surv Rev 41(312):138–151

    Article  Google Scholar 

  • Teunissen PJG, Verhagen S (2011) Integer aperture estimation a framework for GNSS ambiguity acceptance testing. Inside GNSS 2011:66–73

    Google Scholar 

  • Tiberius C, Jonge P (1995) Fast positioning using the LAMBDA method. Proceedings DSNS-95, paper, 30(8)

  • Verhagen S (2004) Integer ambiguity validation: an open problem? GPS Solut 8(1):36–43

    Article  Google Scholar 

  • Verhagen S (2005) The GNSS integer ambiguities: estimation and validation. PhD dissertation, Delft University of Technology, Publications on Geodesy, vol 58, Netherlands Geodetic Commission, Delft

  • Verhagen S, Teunissen PJG (2006a) New global navigation satellite system ambiguity resolution method compared to existing approaches. J Guid Cont Dyn 29(4):981–991

    Article  Google Scholar 

  • Verhagen S, Teunissen PJG (2006b) On the probability density function of the GNSS ambiguity residuals. GPS Solut 10:21–28

    Article  Google Scholar 

  • Verhagen S, Teunissen PJG (2013) The ratio test for future GNSS ambiguity resolution. GPS Solut 17(4):535–548

    Article  Google Scholar 

  • Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: Ambiguity success rate evaluation software for interferometric applications. Comput Geosci 54:361–376

    Article  Google Scholar 

  • Wang J, Stewart M, Tsakiri M (1998) A discrimination test procedure for ambiguity resolution on-the-fly. J Geod 72(11):644–653

    Article  Google Scholar 

  • Wang L, Verhagen S (2015) A new ambiguity acceptance test threshold determination method with controllable failure rate. J Geod 89:361–375

    Article  Google Scholar 

  • Wei M, Schwarz KP (1995) Fast ambiguity resolution using an integer nonlinear programming method. In: Proceedings of ION GPS-1995, Palm Springs CA, pp 1101–1110

  • Wu ZM, Bian SF, Ji B et al (2015) Short baseline GPS multi-frequency single epoch precise positioning: utilizing a new carrier phase combination method. GPS Solut. doi:10.1007/s10291-015-0447-3

  • Xu PL (1998) Mixed integer geodetic observation models and integer programming with applications to GPS ambiguity resolution. J Geod Soc Japan 44:169–187

  • Xu PL (2006) Voronoi cells, probabilistic bounds and hypothesis testing in mixed integer linear models. IEEE Trans Inf Theory 52(7):3122–3138

    Article  Google Scholar 

  • Xu PL (2012) Parallel Cholesky-based reduction for the weighted integer least squares problem. J Geod 86(1):35–52

    Article  Google Scholar 

  • Xu PL, Chi C, Liu J (2012) Integer estimation methods for GPS ambiguity resolution: an applications oriented review and improvement. Surv Rev 44(324):59–71

  • Xu PL, Cannon E, Lachapelle G (1995) Mixed Integer Programming for the Resolution of GPS Carrier Phase Ambiguities. Presented at IUGG95 Assembly, 2–14 July, Boulder, CO, USA

  • Zhu J, Ding X, Chen Y (2001) Maximum-likelihood ambiguity resolution based on Bayesian principle. J Geod 75(4):175–187

    Article  Google Scholar 

Download references

Acknowledgments

Some data in the experiment part are processed based on the “GPSTool” open source Matlab package. We appreciate Professor Takasu for providing this package. This work was financially supported by the National Key Basic Research and Development Program (NOs. 2012CB719902), National Natural Science Foundation of China (No. 41274013 and 41374082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zemin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Bian, S. GNSS integer ambiguity validation based on posterior probability. J Geod 89, 961–977 (2015). https://doi.org/10.1007/s00190-015-0826-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-015-0826-0

Keywords

Navigation