Skip to main content
Log in

Single-frequency PPP models: analytical and numerical comparison

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

Ionosphere delay is a key factor in the single-frequency Precise Point Positioning (SFPPP). In tradition, two SFPPP models are applied, i.e., ionosphere-corrected (IC) and ionosphere-free-half (IFH) models. The ionospheric delays are directly corrected in IC model with external ionospheric products, while they are eliminated by forming the ionosphere-free combination with code and phase in IFH model. However, almost all studies focus on the numerical performance of these two models and lack the comprehensive study on the estimability and solvability of SFPPP model with either code division multiple access (CDMA) or frequency division multiple access (FDMA) system, respectively. In this paper, we dedicate to the analytical study on SFPPP models for both CDMA and FDMA systems. To assimilate the impact of ionospheric delays on positioning, a general SFPPP model, i.e., ionosphere-weighted (IW) model, is first formulated to identify the varying situations with the different uncertainties of ionospheric constraints. Then, we mathematically show how the IC, IFH and ionosphere-float (IF) models are reduced from IW model. The numerical comparison with GPS and GLONASS data with geodetic and cost-effective receivers effectively confirms our theoretical inference on the relationship of IC, IF and IW models and indicates the best results of IW model for all situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdelazeem M, Çelik RN, El-Rabbany A (2016) An improved regional ionospheric model for single-frequency GNSS users. Surv Rev 49(354):153–159

    Article  Google Scholar 

  • Aggrey J (2018) Assessment of global and regional ionospheric corrections in multi-GNSS PPP. ION GNSS + 2018, pp 3967–3981. Miami, Florida, September 24–28, 2018

  • Ashby N (2003) Relativity and the global positioning system. Transl World Seismol 55(5):41–47

    Google Scholar 

  • Bock H, Jäggi A, Dach R, Schaer S, Beutler G (2009) GPS single-frequency orbit determination for low earth orbiting satellites. Adv Space Res 43(5):783–791

    Article  Google Scholar 

  • Bona P (2000) Precision, cross correlation, and time correlation of GPS phase and code observations. GPS Solut 4(2):3–13

    Article  Google Scholar 

  • Cai C, Liu Z, Luo X (2013) Single-frequency ionosphere-free precise point positioning using combined GPS and GLONASS observations. J Navig 66(3):417

    Article  Google Scholar 

  • Choy S, Silcock D (2011) Single frequency ionosphere-free precise point positioning: a Cross-correlation Problem. J Geod Sci 1(4):314–323

    Google Scholar 

  • Choy S, Zhang K, Silcock D (2008) An evaluation of various ionospheric error mitigation methods used in single frequency PPP. Positioning 7(1):62–71

    Article  Google Scholar 

  • Collins J, Langley B (1997) A tropospheric delay model for the user of the wide area augmentation system. Tech. Rep. No. 187, Department of Geodesy and Geomatics Engineering, University of New Brunswick

  • Dach R, Bock H, Fridez P, Gäde A, Hugentobler U, Jäggi A, Adrian, Mervart, Leos, Meindl, Michael; Walser, Peter and Beutler, Gerhard (2007) Bernese GPS software. Schweizerische Geodätische Kommission

  • Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198

    Article  Google Scholar 

  • Gao Y, Zhang Y, Chen K (2006) Development of a real-time single-frequency precise point positioning system and test results. Proceedings of ION GNSS 2006, September 26-29, Fort Worth, TX, USA 2006, pp 2297–2303

  • Geng J, Bock Y (2016) GLONASS fractional-cycle bias estimation across inhomogeneous receivers for PPP ambiguity resolution. J Geod 90:379–396

    Article  Google Scholar 

  • Ghoddousi-Fard R, Lahaye F (2016) Evaluation of single frequency GPS precise point positioning assisted with external ionosphere sources. Adv Space Res 57(10):2154–2166

    Article  Google Scholar 

  • Guo F, Zhang X, Wang J, Ren X (2016) Modeling and assessment of triple-frequency BDS precise point positioning. J Geod 90(11):1223–1235

    Article  Google Scholar 

  • IGS (2007) International GNSS Service. http://www.igs.org/products. Accessed Sept 2018)

  • Klobuchar J (1996) Ionospheric effects on GPS. Glob. Position Syst Theory Appl 1:485–515

    Google Scholar 

  • Kouba J (2009) A guide to using international GNSS service (IGS) products. http://igscb.jpl.nasa.gov/igscb/resource/ pubs/UsingIGSProductsVer21.pdf

  • Le AQ, Tiberius C (2007) Single-frequency precise point positioning with optimal filtering. GPS Solut 11(1):61–69

    Article  Google Scholar 

  • Li B, Teunissen PJG (2014) GNSS antenna array-aided cors ambiguity resolution. J Geod 88(4):363–376

    Article  Google Scholar 

  • Li B, Verhagen S, Teunissen PJG (2014) Robustness of GNSS integer ambiguity resolution in the presence of atmospheric biases. GPS Solut 18(2):283–296

    Article  Google Scholar 

  • Li X, Zhang X, Ren X, Fritsche M, Wickert J, Schuh H (2015) Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci Rep 5:8328

    Article  Google Scholar 

  • Li B, Li Z, Zhang Z, Tan Y (2017) ERTK: extra-wide-lane RTK of triple-frequency GNSS signals. J Geod 91(9):1031–1047

    Article  Google Scholar 

  • Lou Y, Zheng F, Gu S, Wang C, Guo H, Feng Y (2016) Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solut 20(4):1–14

    Article  Google Scholar 

  • Montenbruck O (2003) Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerosp Sci 7(5):396–405

    Article  Google Scholar 

  • Montenbruck O, Hauschild A, Steigenberger P, Hugentobler U, Teunissen P, Nakamura S (2013) Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut 17(2):211–222

    Article  Google Scholar 

  • Oladipo OA, Schüler T (2012) GNSS single frequency ionospheric range delay corrections: NeQuick data ingestion technique. Adv Space Res 50(9):1204–1212

    Article  Google Scholar 

  • Øvstedal O (2002) Absolute positioning with single-frequency GPS receivers. GPS Solut 5(4):33–44

    Article  Google Scholar 

  • Petit G, Luzum B, Al E (2010) IERS conventions (2010). IERS Technical Note 36, Verlag des Bundesamts für Kartographie und Geodäsie, Frankurt am Main

  • Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81(12):781–798

    Article  Google Scholar 

  • Schüler T, Diessongo H, Pokugyamfi Y (2011) Precise ionosphere-free single-frequency GNSS positioning. GPS Solut 15(2):139–147

    Article  Google Scholar 

  • Shi C, Gu S, Lou Y, Ge M (2012) An improved approach to model ionospheric delays for single-frequency precise point positioning. Adv Space Res 49(12):1698–1708

    Article  Google Scholar 

  • Sterle O, Stopar B, Prešeren PP (2015) Single-frequency precise point positioning: an analytical approach. J Geod 89(8):793–810

    Article  Google Scholar 

  • Wu J, Wu S, Hajj G, Bertiger W, Lichten S (1993) Effects of antenna orientation on GPS carrier phase. Manuscr Geod 18:91–98

    Google Scholar 

  • Yunck TP (1993) Coping with the atmosphere and ionosphere in precise satellite and ground positioning. In: Vallance-Jones A (ed.), Environmental effects on spacecraft positioning and trajectories. Geophysical Monograph, vol 73(13), pp 1–16. IUGG

  • Zang N, Li B, Shen Y (2017) Comparison and Analysis of Three GPS + BDS PPP models. Acta Geod Cartogr Sin 46(12):1929–1938 (In Chinese with English Abstract)

    Google Scholar 

  • Zhao Q, Wang Y, Gu S, Zheng F, Shi C, Ge M, Schuh H (2019) Refining ionospheric delay modeling for undifferenced and uncombined GNSS data processing. J Geod 93(4):545–560

    Article  Google Scholar 

  • Zhou F, Dong D, Li W, Jiang X, Wickert J, Schuh H (2018) GAMP: an open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solut 22:33. https://doi.org/10.1007/s10291-018-0699-9

    Article  Google Scholar 

Download references

Acknowledgements

This study is sponsored by National Natural Science Funds of China (41874030, 41622401, 41574023 and 41730102), The Scientific and Technological Innovation Plan from Shanghai Science and Technology Committee (18511101801), The National Key Research and Development Program of China (2017YFA0603102, 2016YFB0501802), and The Fundamental Research Funds for the Central Universities. The authors thank the efforts of the IGS MGEX campaign for providing multi-GNSS data and products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bofeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zang, N., Ge, H. et al. Single-frequency PPP models: analytical and numerical comparison. J Geod 93, 2499–2514 (2019). https://doi.org/10.1007/s00190-019-01311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01311-4

Keywords

Navigation