Skip to main content
Log in

DDT in a smooth tube filled with a hydrogen–oxygen mixture

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Results of experimental study on DDT in a smooth tube filled with sensitive mixtures having detonation cell size from 1 to 3 orders of magnitude smaller than the tube diameter are presented. Stoichiometric hydrogen–oxygen mixtures were used in the tests with initial pressure ranging from 0.2 to 8 bar. A dependence of the run-up distance to DDT on the initial pressure is studied. This dependence is found to be close to the inverse proportionality. It is suggested that the flow ahead of the flame results in formation of the turbulent boundary layer. This boundary layer controls the scale of turbulent motions in the flow. A simple model to estimate the maximum scale of the turbulent pulsations (boundary layer thickness) at flame positions along the tube is presented. The largest scale of the turbulent motions at the location of the onset of detonation is shown to be 1 order of magnitude greater than the detonation cell widths, λ, in all the tests. It is suggested that the onset of detonation is triggered during flame acceleration as soon as the maximum scale of the turbulent pulsations increases up to about 10 λ. The model to estimate the maximum size of turbulent motions, δ, and the correlation δ≈ 10λ, give a basis for estimations of the run-up distances to DDT in tubes with internal diameter D > 20λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Urtiew, P., Oppenheim, A.K.: Experimental observations of the transition to detonation in an explosive gas. Proc. R. Soc. Lond. Ser. A 295, 13–28 (1966)

    ADS  Google Scholar 

  2. Lee, J.H., Knystautas, R., Chan, C.K.: Turbulent flame propagation in obstacle-filled tubes. In: Proceedings of the 20th Symposium (International) on Combustion, pp. 1663–1672. The Combustion Institute, Pittsburgh, PA (1984)

  3. Peraldi, O., Knystautas, R., Lee, J.H.: Criteria for transition to detonation in tubes. In: Proceedings of the 21st Symposium (International) on Combustion, pp. 1629–1637. The Combustion Institute, Pittsburgh (1986)

  4. Dorofeev, S.B., Kuznetsov, M.S., Alekseev, V.I., Efimenko, A.A., Breitung, W.: Evaluation of limits for effective flame acceleration in hydrogen mixtures. J. Loss Prev. Process. Ind. 14, 583–589 (2001)

    Article  Google Scholar 

  5. Veser, A., Breitung, W., Dorofeev, S.B.: Run-up distances to supersonic flames in obstacle-laden tubes. J. Phys. IV Fr. 12, 333–340 (2002)

    Google Scholar 

  6. Schelkin, K.I.: Occurance of detonation in gases in rough-walled tubes. Soviet J. Tech. Phys. 17(5), 613 (1947)

    Google Scholar 

  7. Soloukhin, R.I.: Deflagration to detonation transition in gases. Soviet Prikladn. Mech. i Techn. Phys. (Appl. Mech. Techn. Phys.) (4), 128 (1961)

  8. Lafitte, P., Dumanois, P.: Compt. Rend. Acad. Sci. Paris 183, 284 (1926)

    Google Scholar 

  9. Lafitte, P.: Influence of temperature on the formation of explosive waves. Compt. Rend. Acad. Sci., Paris 186, 951 (1928)

    Google Scholar 

  10. Egerton, A., Gates, S.F.: Proc. R. Soc. Lond. Ser. A 114, 152 (1927)

    ADS  Google Scholar 

  11. Egerton, A., Gates, S.F.: Proc. R. Soc. Lond. Ser. A 116, 516 (1927)

    ADS  Google Scholar 

  12. Schelkin, K.I., Sokolik, A.S.: Soviet. Zhurn. Phys. Chem. 10, 479 (1937)

    Google Scholar 

  13. Campbell, G.A., Rutledge, P.V.: Detonation of hydrogen peroxide vapour. Inst. Chem. Eng. Symp. Ser. 33, Institute of Chemical Engineering, p. 37. London (1972)

  14. Bollinger, L.E., Fong, M.C., Edse, R.: Experimental measurements and theoretical analysis of detonation induction distance. Am. Rocket Soc. J. 31, 588 (1961)

    Google Scholar 

  15. Bollinger, L.E., Laughrey, J.A., Edse, R.: Experimental detonation velocities and induction distances in hydrogen–nitrous oxide mixture. Am. Rocket Soc. J. 32, 81 (1962)

    Google Scholar 

  16. Salamandra, G.D., Bazhenova, T.V., Zaicev, S.G., Soloukhin, R.I.: Some methods for investigation of fast-running processes. Acad. Nauk SSSR, Moscow (1963)

  17. Manzhalei, V.I., Mitrofanov, V.V., Subbotin, V.A.: Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures. Combust. Explos. Shock Waves (USSR) 10, 89–95 (1974)

    Google Scholar 

  18. Gavrikov, A.I., Efimenko, A.A., Dorofeev, S.B.: Detonation cell size predictions from detailed chemical kinetic calculations. Combust. Flame 120, 19–33 (2000)

    Article  Google Scholar 

  19. Reynolds, W.C.: The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN Version 3. Department of Mechanical Engineering, Stanford University, Palo Alto, California (1986)

  20. Gavrikov, A.I., Bezmelnitsyn, A.V., Leliakin, A.L., Dorofeev, S.B.: Extraction of basic flame properties from laminar flame speed calculations. In: Proceedings of the 18th International Colloquium on the Dynamics of Explosions and Reactive Systems, ISBN #0-9711740-0-8, University of Washington, July, 2001, pp. 114/1–114/5 (2001)

  21. Koroll, G.W., Kumar, R.K., Bowles, E.M.: Burning velocities of hydrogen–air mixtures. Combust. Flame 94, 330–340 (1993)

    Article  Google Scholar 

  22. Zel'dovich, Ya.B., Librovich, V.B., Makhviladze, G.M., Sivashinsky, G.I.: On the development of detonation in a non-uniformly preheated gas. Astronautica Acta 15, 313–321 (1970)

    Google Scholar 

  23. Lee, J.H.S., Knystautas, R., Yoshikawa, N.: Photochemical initiation and gaseous detonations. Acta Astronautica 5, 971–972 (1978)

    Article  Google Scholar 

  24. Dorofeev, S.B., Efimenko, A.A., Kochurko, A.S., Chaivanov, B.B.: Evaluation of the hydrogen explosions hazard. Nucl. Eng. Design 148, 305 (1994)

    Article  Google Scholar 

  25. Khokhlov, A.M., Oran, E.S., Wheeler, J.C.: A theory of deflagration-to-detonation transition in unconfined flames. Combust. Flame 108, 503–517 (1997)

    Article  Google Scholar 

  26. Dorofeev, S.B., Sidorov, V.P., Kuznetsov, M.S., Matsukov, I.D., Alekseev, V.I.: Effect of scale on the onset of detonations. Shock Waves 10, 137–149 (2000)

    Article  ADS  Google Scholar 

  27. Landau, L.D., Lifshitz, E.M.: Hydrodynamics, 3rd edn., p. 736. Nauka, Moscow (1986)

    Google Scholar 

  28. Loiciansky, L.G.: Mechanics of Fluid and Gas, 5 edn., p. 736. Nauka, Moscow (1978)

    Google Scholar 

  29. Khokhlov, A.M., Oran, E.S., Thomas, G.O.: Numerical simulation of detonation initiation in a flame brush: the role of hot spots. Combust. Flame 119, 400–416 (1999)

    Article  Google Scholar 

  30. Khokhlov, A.M., Gameso, V.N., Oran, E.S.: Effects of boundary layers on shock-flame interactions and DDT. In: Proceedings of the 18th International Colloquium on the Dynamics of Explosions and Reactive Systems, July, 2001, University of Washington, ISBN #0-9711740-0-8 (2001)

  31. Kuznetsov, M., Singh, R.K., Breitung, W., Stern, G., Grune, J., Friedrich, A., Sempert, K., Veser, A.: Evaluation of structural integrity of typical DN15 tubes under detonation loads. Report Forschungszentrum Karlsruhe, December (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dorofeev.

Additional information

Communicated by J.E. Shepherd

PACS 47.40.-x; 47.27.Nz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, M., Alekseev, V., Matsukov, I. et al. DDT in a smooth tube filled with a hydrogen–oxygen mixture. Shock Waves 14, 205–215 (2005). https://doi.org/10.1007/s00193-005-0265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-005-0265-6

Keywords

Navigation