Skip to main content
Log in

Mechanism of detonation of emulsion explosives with microballoons

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

A mechanism of detonation of emulsion explosives containing microballoons in finite-diameter charges is described. A parametric dependence of the detonation velocity on the charge characteristics is obtained. The fact that the reaction-zone width increases with decreasing charge porosity is explained. It is shown that the emulsion does not completely burn out at the Chapman-Jouguet point. Final formulas for calculating the reaction time and reaction-zone width are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HE:

High explosive

EMX:

Emulsion explosive

CJ:

Chapman-Jouguet point

References

  1. Anshits A.G., Anshits N.N. et al.: Detonation velocity of emulsion explosives containing cenospheres. Combust. Explosi. Shock Waves 41, 591–598 (2005)

    Article  Google Scholar 

  2. Chaundri M., Field J.E.: The role of rapidly compressed gas pockets in the initiation of condensed explosives. Roy. Soci. Lond. Proceed. Ser. A 340, 113–128 (1974)

    Article  Google Scholar 

  3. Chick, M.C.: The effect of interstital gas on the shock sensitivity of low density explosive compacts. In: Proceedings of the 4th Symposium (International) on Detonation, U.S. Naval Ordnance Laboratory, Maryland, pp. 349–358 (1965)

  4. Deribas A.A., Medvedev A.E., Reshetnyak A.Yu., Fomin V.M.: Detonation of emulsion explosives containing hollow microspheres. Dokl. Phys. 389, 163–165 (2003)

    Article  Google Scholar 

  5. Deribas, A.A., Medvedev, A.E., Fomin, V.M., Reshetnyak, A.Yu., Shabalin, I.I.: Mechanism of detonation of emulsion explosives with hollow microballoons. In: XII International Conference on the Methods of Aerophysical Research, Novosibirsk, Russia, 28 June–3 July, 2004, Part I, pp. 75–80 (2004)

  6. Dremin, A.N., Klimenko, V.Yu., Kosireva, I.Yu.: On the mechanism of the reaction “hot spots” origin at liquid explosives detonation. In: Proceedings of the 9th Symposium (International) on Detonation, Albuquerque, New Mexico, pp. 678–687 (1985)

  7. Eyring H., Powell R.E. et al.: The stability of detonation. Chem. Rev. 13, 69–181 (1949)

    Article  Google Scholar 

  8. Gol’dshtik, M.A.: Transfer Processes in a Grainy Layer. Institute of Thermophysics SB RAS, Novosibirsk (1984)

  9. Holian B.L., Germann T.C., Maillet J.-B., White C.T.: Atomistic mechanism for hot spot initiation. Phys. Rev. Lett. 89, 285501-1–285501-4 (2002)

    Article  Google Scholar 

  10. Khasainov, B.A., Borisov, A.A., Ermolaev, B.S., Korotkov, A.I.: Viscoplastic mechanism of hot-spot initiation in solid heterogeneous explosives. In: Detonation, Proceedings of II All-Union Workshop on Detonation, Issue II, Chernogolovka, 19–22 (1981)

  11. Khasainov B.A., Ermolaev B.S., Presles H.N.: On the effect of grain size on shock sensitivity of heterogeneous high explosives. Shock Waves 7, 89–105 (1997)

    Article  Google Scholar 

  12. Kondrikov B.N., Annikov V.E., Kozak G.D.: A generalized dependence of the critical detonation diameter of porous substances on the density. Combust. Explos. Shock Waves 33, 219–229 (1997)

    Article  Google Scholar 

  13. Lee J., Persson P.A.: Detonation behavior of emulsion explosives. Propellants, Explos. Pyrotech. 15, 208–216 (1990)

    Article  Google Scholar 

  14. Lee, J., Sandstrom, F.W., Craig, B.G., Persson, P.A.: Detonation and shock initiation properties of emulsion explosives. In: Proceedings of the 9th Symposium (International) on Detonation, Portland Oregon, pp. 263–271 (1989)

  15. Mader Ch.L.: Numerical Modeling of Explosives and Propellant, 2nd edn. CRC Press LLS, New York (1998)

    Google Scholar 

  16. Mitrofanov, V.V.: Detonation Theory. Izd. Novosib. Gos. Univ., Novosibirsk (1982)

  17. Nikolaevskii, V.N. (ed.): Underground and Underwater Explosions 416 pp. Mir, Moscow (1974)

  18. Patrashev, A.N., et al.: Applied Hydromechanics. Voenizdat, Moscow (1970)

  19. Sedov L.I.: Mechanics of Continuous Media, vol. 2. Lan’, Moscow (2004)

    Google Scholar 

  20. Sil’vestrov, V.V., Karakhanov, S.M., et al.: Effect of emulsion HE density on the reaction-zone width. In: Proceedings of the International Conference “VIIth Khariton Readings”, March 14–18, pp. 132–137. Inst. Exp. Phys. Sarov (2005)

  21. Sil’vestrov V.V.: Dependence of detonation velocity on density for high explosives of the second group. Combust. Explosi. Shock Waves 42, 472–479 (2006)

    Article  Google Scholar 

  22. Solovev, V.S., Attenkov, A.V., Babkin, A.V., Boiko, M.M., Kolpakov, V.I.: Estimate of the possibility of local heating by the plastic flow mechanism. In: Detonation, Proceedings of II All-Union Workshop on Detonation, Issue II, Chernogolovka, pp. 15–19 (1981)

  23. Sosnin, V.A., Kolganov, E.V.: Investigation of the detonation process in commercial emulsion explosives. In: Substances, Materials, and Structures under Intense Dynamic Actions: Vth Khariton Readings, Sarov, pp. 265–274 (2003)

  24. Zababakhin, E.I.: Some Issues of Explosion Gas Dynamics. Russian Federal Nuclear Center, Institute of Technical Physics, Snezhinsk (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Medvedev.

Additional information

Communicated by E. Timofeev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, A.E., Fomin, V.M. & Reshetnyak, A.Y. Mechanism of detonation of emulsion explosives with microballoons. Shock Waves 18, 107–115 (2008). https://doi.org/10.1007/s00193-008-0141-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-008-0141-2

Keywords

PACS

Navigation