Skip to main content
Log in

Modeling of the unsteady force for shock–particle interaction

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The interaction between a particle and a shock wave leads to unsteady forces that can be an order of magnitude larger than the quasi-steady force in the flow field behind the shock wave. Simple models for the unsteady force have so far not been proposed because of the complicated flow field during the interaction. Here, a simple model is presented based on the work of Parmar et al. (Phil Trans R Soc A 366:2161–2175, 2008). Comparisons with experimental and computational data for both stationary spheres and spheres set in motion by shock waves show good agreement in terms of the magnitude of the peak and the duration of the unsteady force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagchi P., Balachandar S.: Inertial and viscous forces on a rigid sphere in straining flows at moderate Reynolds numbers. J. Fluid Mech. 481, 105–148 (2003)

    Article  MATH  Google Scholar 

  2. Bredin M.S., Skews B.W.: Drag measurements in unsteady compressible flow. Part 1: an unsteady flow facility and stress wave balance. R&D J. South Afr. Inst. Mech. Eng. 23, 3–12 (2007)

    Google Scholar 

  3. Britan A., Elperin T., Igra O., Jiang J.P.: Acceleration of a sphere behind planar shock-waves. Exp. Fluids 20(2), 84–90 (1995)

    Article  Google Scholar 

  4. Bryson A.E., Gross R.W.F.: Diffraction of strong shocks by cones, cylinders and spheres. J. Fluid Mech. 10(1), 1–16 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carrier G.F.: Shock waves in a dusty gas. J. Fluid Mech. 4(4), 376–382 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chang E.J., Maxey M.R.: Unsteady-flow about a sphere at low to moderate Reynolds-number. 2. accelerated motion. J. Fluid Mech. 303, 133–153 (1995)

    Article  MATH  Google Scholar 

  7. Clift, R., Gauvin, W.H.: The motion of particles in turbulent gas streams. In: Proc. Chemeca ’70, vol. 1, pp. 14–28 (1970)

  8. Devals C., Jourdan G., Estivalezes J.L., Meshkov E.E., Houas L.: Shock tube spherical particle accelerating study for drag coefficient determination. Shock Waves 12(4), 325–331 (2003)

    Article  Google Scholar 

  9. Eames I., Hunt J.C.R.: Forces on bodies moving unsteadily in rapidly compressed flows. J. Fluid Mech. 505, 349–364 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gatignol R.: The Faxén formulas for a rigid particle in an unsteady non-uniform stokes-flow. J. Mec. Theor. Appl. 2(2), 143–160 (1983)

    MATH  Google Scholar 

  11. Gilbert M., Davis L., Altman D.: Velocity lag of particles in linearly accelerated combustion gases. Jet Propulsion 25(1), 26–30 (1955)

    Google Scholar 

  12. Haselbacher, A.: A WENO reconstruction algorithm for unstructured grids based on explicit stencil construction. AIAA Paper 2005-0879 (2005)

  13. Haselbacher A., Balachandar S., Kieffer S.W.: Open-ended shock tube flows: influence of pressure ratio and diaphragm position. AIAA J. 45(8), 1917–1929 (2007)

    Article  Google Scholar 

  14. Igra O., Takayama K.: Shock-tube study of the drag coefficient of a sphere in a nonstationary flow. Proc. R. Soc. Lond. A 442(1915), 231–247 (1993)

    Article  Google Scholar 

  15. Ingebo, R.D.: Drag coefficient for droplets and solid spheres in clouds accelerated in air streams. NACA Tech. Note 3762 (1956)

  16. Jourdan G., Houas L., Igra O., Estivalezes J.L., Devals C., Meshkov E.E.: Drag coefficient of a sphere in a non-stationary flow: new results. Proc. R. Soc. A 463(2088), 3323–3345 (2007)

    Article  Google Scholar 

  17. Kriebel A.R.: Analysis of normal shock waves in particle laden gas. J. Basic Eng. 84(4), 655–665 (1964)

    Google Scholar 

  18. Landau L.D., Lifshitz E.M.: Fluid Mechanics, 2nd edn. Butterworth-Heinemann, London (1987)

    MATH  Google Scholar 

  19. Lock G.D.: Experimental measurements in a dusty-gas shock-tube. Int. J. Multiphase Flow 20(1), 81–98 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Longhorn A.L.: The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. Q. J. Mech. Appl. Math. 5(1), 64–81 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  21. Loth E.: Compressibility and rarefaction effects on drag of a spherical particle. AIAA J. 46(9), 2219–2228 (2008)

    Article  Google Scholar 

  22. Love A.E.H.: Some illustrations of modes of decay of vibratory motions. Proc. Lond. Math. Soc. 2, 88–113 (1905)

    Article  Google Scholar 

  23. Magnaudet J., Eames I.: The motion of high-Reynolds-mumber bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659–708 (2000)

    Article  MathSciNet  Google Scholar 

  24. Maxey M.R., Riley J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26(4), 883–889 (1983)

    Article  MATH  Google Scholar 

  25. Mei R.W.: Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds-number. J. Fluid Mech. 270, 133–174 (1994)

    Article  MATH  Google Scholar 

  26. Mei R.W., Adrian R.J.: Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds-number. J. Fluid Mech. 237, 323–341 (1992)

    Article  MATH  Google Scholar 

  27. Miles J.W.: On virtual mass and transient motion in subsonic compressible flow. Q. J. Mech. Appl. Math. 4(4), 388–400 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mougin G., Magnaudet J.: The generalized Kirchhoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow. Int. J. Multiphase Flow. 28(11), 1837–1851 (2002)

    Article  MATH  Google Scholar 

  29. Parmar M., Haselbacher A., Balachandar S.: On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Phil. Trans. R Soc. A 366(1873), 2161–2175 (2008)

    Article  Google Scholar 

  30. Rodriguez, G., Grandeboeuf, P., Khelifi, M., Haas, J.F.: Drag coefficient measurement of spheres in a vertical shock tube and numerical simulation. In: Brun, R., Dumitrescu, L. (eds.) Shock Waves @ Marseille III, pp. 43–48. Springer, Heidelberg (1995)

  31. Rudinger G.: Some properties of shock relaxation in gas flows carrying small particles. Phys. Fluids 7(5), 658–663 (1964)

    Article  MathSciNet  Google Scholar 

  32. Rudinger G.: Effective drag coefficient for gas-particle flow in shock tubes. J. Basic Eng. 92(1), 165–172 (1970)

    Google Scholar 

  33. Rudinger, G.: Fundamentals of Gas-Particle Flow. Handbook of Powder Technology, vol. 2. Elsevier Scientific Publishing Co., Amsterdam (1980)

  34. Schiller L., Naumann A.: Über die grundlegenden Kräfte bei der Schwerkraftaufbereitung. Zeitschrift des Vereines Deutscher Ingenieure 77, 318–320 (1933)

    Google Scholar 

  35. Selberg B.P., Nicholls J.A.: Drag coefficient of small spherical particles. AIAA J 6(3), 401–408 (1968)

    Article  Google Scholar 

  36. Shapiro, A.H.: The dynamics and thermodynamics of compressible fluid flow. The Ronald Press Company, New York (1953)

  37. Skews B.W., Bredin M.S., Efune M.: Drag measurements in unsteady compressible flow. Part 2: shock wave loading of spheres and cones. R&D J. South Afr. Inst. Mech. Eng. 23, 13–19 (2007)

    Google Scholar 

  38. Sommerfeld M.: The unsteadiness of shock-waves propagating through gas-particle mixtures. Exp. Fluids 3(4), 197–206 (1985)

    Article  Google Scholar 

  39. Soo S.L.: Gas-dynamic processes involving suspended solids. AIChE J. 7(3), 384–391 (1961)

    Article  Google Scholar 

  40. Sun M., Saito T., Takayama K., Tanno H.: Unsteady drag on a sphere by shock wave loading. Shock Waves 14(1–2), 3–9 (2005)

    Article  Google Scholar 

  41. Suzuki T., Sakamura Y., Igra O., Adachi T., Kobayashi S., Kotani A., Funawatashi Y.: Shock tube study of particles’ motion behind a planar shock wave. Meas. Sci. Tech. 16(12), 2431–2436 (2005)

    Article  Google Scholar 

  42. Tanno H., Itoh K., Saito T., Abe A., Takayama K.: Interaction of a shock with a sphere suspended in a vertical shock tube. Shock Waves 13(3), 191–200 (2003)

    Article  Google Scholar 

  43. Tanno H., Komuro T., Takahashi M., Takayama K., Ojima H., Onaya S.: Unsteady force measurement technique in shock tubes. Rev. Sci. Instrum. 75(2), 532–536 (2004)

    Article  Google Scholar 

  44. Taylor, G.I.: The motion of a body in water when subjected to a sudden impulse. In: Batchelor, G. (ed.) The Scientific Papers of G.I. Taylor, vol. 3, pp. 306–308. The Cambridge University Press, New York (1942)

  45. Wakaba L., Balachandar S.: On the added mass force at finite Reynolds and acceleration numbers. Theor. Comput. Fluid Dyn. 21(2), 147–153 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Haselbacher.

Additional information

Communicated by O. Igra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parmar, M., Haselbacher, A. & Balachandar, S. Modeling of the unsteady force for shock–particle interaction. Shock Waves 19, 317–329 (2009). https://doi.org/10.1007/s00193-009-0206-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0206-x

Keywords

PACS

Navigation