Skip to main content
Log in

Nozzle flow separation

  • Editorial
  • Published:
Shock Waves Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lawrence, R.A.: Symmetrical and unsymmetrical flow separation in supersonic nozzles. Research Report Number 67-1, Southern Methodist University (1967)

  2. Verma S.B.: Study of flow separation in truncated ideal contour nozzle. J. Propuls. Power 18, 1112–1121 (2002)

    Article  Google Scholar 

  3. Nave, L.H., Coffey, G.A.: Sea-level side loads in high-area-ratio rocket engines. AIAA Paper 73-1284 (1973)

  4. Nguyen A.T., Deniau H., Girard S., Alziary de Requefort T.: Unsteadiness of flow separation and end-effects regime in a thrust-optimized contour rocket nozzle. Flow Turbul. Combust. 71, 1–21 (2003)

    Article  Google Scholar 

  5. Hagemann G., Frey M., Koschel W.: Appearance of restricted shock separation in rocket nozzles. J. Propuls. Power 18, 577–584 (2002)

    Article  Google Scholar 

  6. Ostlund, J.: Flow processes in rocket engine nozzles with focus on flow-separation and side-loads. Ph.D. Thesis, Royal Inst. of Tech., Stockholm, TRITA-MEK (2002)

  7. Chen C.L., Chakravarthy S.R., Hung C.M.: Numerical investigation of separated nozzle flows. AIAA J. 32, 1836–1843 (1994)

    Article  Google Scholar 

  8. Gross A., Weiland C.: Numerical simulation of separated cold gas nozzle flows. J. Propuls. Power 20, 509–519 (2004)

    Article  Google Scholar 

  9. Deck S., Nguyen A.T.: Unsteady side loads in a thrust-optimized contour nozzle at hysteresis regime. AIAA J. 42, 1878–1888 (2002)

    Article  Google Scholar 

  10. Nasuti F., Onofri M.: Viscous and inviscid vortex generation during start-up of rocket nozzles. AIAA J. 36(5), 809–815 (1998)

    Article  Google Scholar 

  11. Moríñigo J.A., Salvá J.: Three-dimensional simulation of the self-oscillating flow and side-loads in an over-expanded subscale rocket nozzle. J. Aerosp. Eng. 220(G), 507–523 (2006)

    Google Scholar 

  12. Schmucker, R.H.: Flow Process in Overexpanded Chemical Rocket Nozzles. Part 2: Side Loads due to Asymmetric Separation. NASA TM-77395 (1984)

  13. Courant R., Friedrichs K.O.: Supersonic Flow and Shock Waves, vol. 21. Springer, Berlin (1999)

    MATH  Google Scholar 

  14. Mattsson, J., Hogman, U., Torngren, L.: A Sub Scale Test Programme on Investigation of Flow Separation and Side Loads in Rocket Nozzles. In: Proceedings of the 3rd European Symposium on Aerothermodynamics for Space Vehicles, pp. 373–378. 24–26 November 1998, ESTEC, ESA SP-426, Noordwijk, The Netherlands (1998)

  15. Reijasse, P., Servel, P., Hallard, R.: Synthesis of the 1998-1999 ONERA Works in the FSCD Working Group. Tech. Rep. RTS 49/4361 DAFE/Y, ONERA, Chatillon Cedex, France (1999)

  16. Frey, M., Stark, R., Ciezki, H.K., Quessard, F., Kwan, W.: Subscale Nozzle Testing at the P6.2 Nozzle Stand. AIAA Paper 2000-3777, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (2000)

  17. Frey M., Hagemann G.: Restricted shock separation in rocket nozzles. J. Propuls. Power 16(3), 478–484 (2000)

    Article  Google Scholar 

  18. Hagemann G., Frey M.: Shock pattern in the plume of rocket nozzles: needs for design consideration. Shock Waves 17(6), 387–395 (2008)

    Article  Google Scholar 

  19. Nasuti, F., Onofri, M.: Viscous and Inviscid Vortex Generation During Nozzle Flow Transients. AIAA Paper 96-0076, 34th AIAA Aerospace Sciences Meeting and Exhibit (1996)

  20. Onofri, M., Nasuti, F., Bongiorno, M.: Shock Generated Vortices and Pressure Fluctuations in Propulsive Nozzles. AIAA Paper 98-0777, 36th AIAA Aerospace Sciences Meeting and Exhibit (1998)

  21. Onofri, M., Nasuti, F.: The Physical Origin of Side Loads in Rocket Nozzles. AIAA Paper 99-2587, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (1999)

  22. Terhardt, M., Hagemann, G., Frey, M.: Flow Separation and Side-Load Behavior of the Vulcain Engine. AIAA Paper 99-2762, 35th AIAA/ ASME/ SAE/ ASEE Joint Propulsion Conference (1999)

  23. Ostlund, J., Jaran, M.: Assessment of Turbulence Models in Overexpanded Rocket Nozzle Flow Simulations. AIAA Paper 99-2583, 35th AIAA/ ASME/ SAE/ASEE Joint Propulsion Conference (1999)

  24. Girard, S., Alziary de Roquefort, T.: Study of flow separation in overexpanded rocket nozzles. Fourth French–Russian–Italian–Uzbeck Workshop, Marseille, France (1997)

  25. Deck S., Guillen P.: Numerical Simulation of Side Loads in an Ideal Truncated Nozzle. J. Propuls. Power 18(2), 261–269 (2002)

    Article  Google Scholar 

  26. Kwan, W., Stark, R.: Flow separation phenomena in subscale rocket nozzles. AIAA 2002-4229, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2002)

  27. Stark, R., Wagner, B.: Experimental study of boundary layer separation in truncated ideal contour nozzles. Shock Waves, present Issue (2009)

  28. Mouronval A.-S., Hadjadj A.: Numerical Study of the Starting Process in a Supersonic Nozzle. J. Propuls. Power 21(2), 374–378 (2005)

    Article  Google Scholar 

  29. Ostlund, J., Damgaard, T., Frey, M.: Side-loads phenomena in highly over-expanded rocket nozzles. AIAA Paper 2001-3684 (2001)

  30. Stark, R., Kwan, W., Quessard, F., Hagemann, G., Terhardt, M.: Rocket nozzle cold gas test campaigns for plume investigations. In: Proceeding of the Fourth European Symposium on Aerothermodynamics for Space Vehicles (2001)

  31. Tomita, T., Sakamoto, H., Onodera, T., Sasaki, M., Takahashi, M., Tamura, H., Watanabe, Y.: Experimental evaluation of side-loads characteristics on TP, CTP and TO nozzles. AIAA Paper, 04-3678 (2004)

  32. Martelli, E., Nasuti, F., Onofri, M.: Numerical calculation of FSS/RSS transition in highly overexpanded rocket nozzle flows. Shock Waves (2009, submitted)

  33. Perrot, Y., Hadjadj, A.: Numerical simulation of transient nozzle flows. Shock Waves (2009, submitted)

  34. Papamoschou, D., Zill, A., Johnson, A.: Supersonic flow separation in planar nozzles. Shock Waves (2009, this issue)

  35. Verma, S.B.: Shock unsteadiness in a thrust optimized parabolic nozzle. Shock Waves (2009, this issue)

  36. Tomita, T., Takahashi, M., Sasaki, M., Sakamoto, H., Takahashi, M., Tamura, H.: Experimental evaluation of side-loads in LE-7A prototype engine nozzle. Shock Waves (2009, this issue)

  37. Nurnberger-Genin, C., Stark, R.: Flow transition in dual bell nozzles. Shock Waves (2009, this issue)

  38. Hadjadj A., Kudryavtsev A.: Computation and flow visualization in high-speed aerodynamics. Journal of Turbulence 16(6), 1–25 (2005)

    Google Scholar 

  39. CNES (ed.): Proceedings of 2nd FSCD/ATAC Workshop on Nozzle Flow Separation, ESA/ESTEC, 15–16 November, The Netherlands (2006)

  40. Nasuti, F., Onofri, M.: Shock structure in separated nozzle flows. Shock Waves (2009, this issue)

  41. Wang, T.-S.: Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle. Shock Waves (2009, this issue)

  42. Deck, S.: Delayed detached eddy simulation of the end-effect regime and side loads in an overexpanded nozzle flow. Shock Waves (2009, this issue)

  43. Nguyen, A.T., Deniau, H., Girard, S., Alziary de Roquefort, T.: Wall pressure fluctuations in an over-expanded rocket nozzle. AIAA Paper 2002–4001 (2002)

  44. Girard, S.: Etude des charges latérales dans une tuyère supersonique surdétendue. Ph.D Thesis, University of Poitiers, France (1999)

  45. Salmon J.T., Bogar T.J., Sajben M.: Laser Doppler velocimeter measurements in unsteady, separated transonic diffuser flows. AIAA J. 21(12), 1690–1697 (1983)

    Article  Google Scholar 

  46. Sajben M., Bogar T.J., Kroutil J.C.: Forced oscillation experiments in supercritical diffuser flows. AIAA J. 22(4), 465–474 (1984)

    Article  Google Scholar 

  47. Dupont P., Haddad C., Debiève J.-F.: Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006)

    Article  Google Scholar 

  48. Ganapathisubramani B., Clemens N.T., Dolling D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Hadjadj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadjadj, A., Onofri, M. Nozzle flow separation. Shock Waves 19, 163–169 (2009). https://doi.org/10.1007/s00193-009-0209-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0209-7

Keywords

Navigation