Skip to main content
Log in

Effect of initial disturbance on the detonation front structure of a narrow duct

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The effect of an initial disturbance on the detonation front structure in a narrow duct is studied by three-dimensional numerical simulation. The numerical method used includes a high-resolution fifth-order weighted essentially non-oscillatory scheme for spatial discretization, coupled with a third-order total variation diminishing Runge-Kutta time-stepping method. Two types of disturbances are used for the initial perturbation. One is a random disturbance which is imposed on the whole area of the detonation front, and the other is a symmetrical disturbance imposed within a band along the diagonal direction on the front. The results show that the two types of disturbances lead to different processes. For the random disturbance, the detonation front evolves into a stable spinning detonation. For the symmetrical diagonal disturbance, the detonation front displays a diagonal pattern at an early stage, but this pattern is unstable. It breaks down after a short while and it finally evolves into a spinning detonation. The spinning detonation structure ultimately formed due to the two types of disturbances is the same. This means that spinning detonation is the most stable mode for the simulated narrow duct. Therefore, in a narrow duct, triggering a spinning detonation can be an effective way to produce a stable detonation as well as to speed up the deflagration to detonation transition process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kailasanath K.: Review of propulsion applications of detonation waves. AIAA J. 38, 1698–1708 (2000)

    Article  Google Scholar 

  2. Roy G.D., Frolov S.M., Borisov A.A., Netzer D.W.: Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energy Combust. Sci. 30, 545–672 (2004)

    Article  Google Scholar 

  3. Lee, J.H.S.: The propagation mechanism of cellular detonation. In: Jiang, Z. (ed.) Shock Waves: Proceedings of the 24th International Symposium on Shock Waves, vol. 1, pp. 19–30. Springer, Berlin

  4. Mitrofanov V.V.: Modern View of Gaseous Detonation Mechanism, Progress in Astronautics and Aeronautics, vol. 137. Washington DC, AIAA (1996)

    Google Scholar 

  5. Lu, F., Bellini, R.: Progress in modeling pulse detonations. Lecture Notes in Workshop on Moving Interface Problems and Applications in Fluid Dynamics, 8 Jan–31 Mar, IMS, NUS (2007)

  6. Taki S., Fujiwara T.: Numerical analysis of two dimensional nonsteady detonations. AIAA J. 16, 73–77 (1978)

    Article  Google Scholar 

  7. Oran E., Young T., Boris J.: Application of time-dependent numerical methods to the description of reactive shocks. Proc. Combust. Inst. 17, 43–54 (1978)

    Google Scholar 

  8. Kailasanath K., Oran E.S., Boris J.P., Young T.R.: Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Combust. Flame 61, 199–209 (1985)

    Article  Google Scholar 

  9. Bourlioux A., Majda A.J.: Theoretical and numerical structure of unstable detonations. Philos. Trans. Roy. Soc. London Ser. A 350, 29–68 (1995)

    Article  MATH  Google Scholar 

  10. Gamezo V.N., Desbordes D., Oran E.S.: Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154–165 (1999)

    Article  Google Scholar 

  11. Sharpe G.J.: Transverse waves in numerical simulations of cellular detonations. J. Fluid Mech. 447, 31–51 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Oran E.S., Weber J.E., Stefaniw E.I., Lefebvre M.H., Anderson J.D.: A numerical study of two-dimensional H2–O2–Ar detonation using a detailed chemical reaction model. Combust. Flame 113, 147–163 (1998)

    Article  Google Scholar 

  13. Hu X.Y., Khoo B.C., Zhang D.L., Jiang Z.L.: The cellular structure of a two-dimensional H-2/O-2/Ar detonation wave. Combust. Theory Model. 8, 339–359 (2004)

    Article  Google Scholar 

  14. Fan H.Y., Lu F.K.: Comparison of detonation processes in a variable cross-section chamber and a simple tube. J. Propul. Power 21(1), 65–75 (2005)

    Article  MathSciNet  Google Scholar 

  15. Fan H.Y., Lu F.K.: Numerical simulation of detonation processes in a variable cross-section chamber. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 222(5), 673–686 (2008)

    Article  MathSciNet  Google Scholar 

  16. Qu Q., Khoo B.C., Dou H.-S., Tsai H.M.: The evolution of a detonation wave in a variable cross-sectional chamber. Shock Waves 18, 213–233 (2008)

    Article  MATH  Google Scholar 

  17. Williams D.N., Bauwens L., Oran E.S.: Detailed structure and propagation of three-dimensional detonations. Proc. Combust. Inst. 26, 2991–2998 (1997)

    Google Scholar 

  18. Tsuboi N., Katoh S., Hayashi A.K.: Three-dimensional numerical simulation for hydrogen/air detonation: rectangular and diagonal structures. Proc. Combust. Inst. 29, 2783–2788 (2002)

    Article  Google Scholar 

  19. Deiterding R., Bader G.: High-resolution simulation of detonations with detailed chemistry. In: Warnecke, G. (eds) Analysis and Numerics for Conservation Laws, pp. 69–91. Springer, Berlin (2005)

    Chapter  Google Scholar 

  20. He, H., Yu, S.T.J., Zhang, Z.-C.: Direct Calculations of One-, Two-, and Three-dimensional detonations by the CESE method, AIAA Paper 2005-0229 (2005)

  21. Eto K., Tsuboi N., Hayashi A.K.: Numerical study on three-dimensional C-J detonation waves: detailed propagating mechanism and existence of OH radical. Proc. Combust. Inst. 30, 1907–1913 (2005)

    Article  Google Scholar 

  22. Deledicque V., Papalexandris M.V.: Computational study of three-dimensional gaseous detonation structures. Combust. Flame 144, 821–837 (2006)

    Article  Google Scholar 

  23. Dou H.-S., Tsai H.M., Khoo B.C., Qiu J.: Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme. Combust. Flame 154, 644–659 (2008)

    Article  Google Scholar 

  24. Hanana M., Lefebvre M.H., Van Tiggelen P.J.: Pressure profiles in detonation cells with rectangular and diagonal structures. Shock Waves 11, 77–88 (2001)

    Article  Google Scholar 

  25. Tsuboi N., Hayashi A.K.: Numerical study on spinning detonations. Proc. Combust. Inst. 31, 2389–2396 (2007)

    Article  Google Scholar 

  26. Schott G.L.: Observations of the structure of spinning detonation waves. Phys. Fluids 8, 850–865 (1965)

    Article  Google Scholar 

  27. Zhang F., Gronig H.: Spin detonation in reactive particles-oxidizing gas flow. Phys. Fluids A 3(8), 1983–1990 (1991)

    Article  Google Scholar 

  28. Ishii K., Gronig H.: Behavior of detonation waves at low pressures. Shock Waves 8, 55–61 (1998)

    Article  MATH  Google Scholar 

  29. Zhang F., Murray S.B., Gerrard K.B.: Aluminium particles-air detonation at elevated pressures. Shock Waves 15, 313–324 (2006)

    Article  Google Scholar 

  30. Huang Z.W., Lefebvre M.H., Van Tiggelen P.J.: Experiments on spinning detonations with detailed analysis of the shock structure. Shock Waves 10, 119–125 (2000)

    Article  Google Scholar 

  31. Mizutani T., Matsui H., Sanui H., Yonekura M.: Decompsoing detonation and deflagration properties of ozone/oxygen mixtures. J. Loss Prev. Process Ind. 14, 559–565 (2001)

    Article  Google Scholar 

  32. Achasov O.V., Penyazkov O.G.: Dynamics study of detonation-wave cellular structure 1.Statistical properties of detonation wave front. Shock Waves 11, 297–308 (2002)

    Article  Google Scholar 

  33. Kasimov A.R., Stewart D.S.: Spinning instability of gaseous detonations. J. Fluid Mech. 466, 179–203 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ivleva T.P., Merzhanov A.G.: Structure and variability of spinning reaction waves in three-dimensional excitable media. Phys. Rev. E 64, 036218 (2001)

    Article  Google Scholar 

  35. Tsuboi N., Asahara M., Eto K., Hayashi A.K.: Numerical simulation of spinning detonation in square tube. Shock Waves 18, 329–344 (2008)

    Article  MATH  Google Scholar 

  36. Dou, H.S., Tsai, H.M., Khoo, B.C., Qiu, J.: Three-dimensional simulation of detonation waves using WENO schemes, In: 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 8–11 Jan 2007 (AIAA Paper-2006-1177)

  37. Vasil’ev A.A.: Cell size as the main geometric parameter of a multifront detonation wave. J. Propul. Power 22, 1245–1260 (2006)

    Article  Google Scholar 

  38. Jiang G.S., Shu C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  39. Toro E.F.: Riemann solvers and numerical methods for fluids dynamics. Springer, Berlin (1997)

    Google Scholar 

  40. He X., Karagozian A.R.: Numerical simulation of pulse detonation engine phenomena. J. Sci. Comput. 19(1–3), 201–224 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Shu Dou.

Additional information

Communicated by L. Bauwens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, HS., Khoo, B.C. Effect of initial disturbance on the detonation front structure of a narrow duct. Shock Waves 20, 163–173 (2010). https://doi.org/10.1007/s00193-009-0240-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0240-8

Keywords

Navigation