Skip to main content
Log in

Propagation of near-limit gaseous detonations in small diameter tubes

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

In this study, detonation limits in very small diameter tubes are investigated to further the understanding of the near-limit detonation phenomenon. Three small diameter circular tubes of 1.8, 6.3, and 9.5 mm inner diameters, of 3 m length, were used to permit the near-limit detonations to be observed over long distances of 300 to 1500 tube diameters. Mixtures with high argon dilution (stable) and without dilution (unstable) are used for the experiments. For stable mixtures highly diluted with argon for which instabilities are not important and where failure is due to losses only, the limit obtained experimentally appears well to be in good agreement in comparison to that computed by the quasi-steady ZND theory with flow divergence or curvature term modeling the boundary layer effects. For unstable detonations it is suggested that suppression of the instabilities of the cellular detonation due to boundary conditions is responsible for the failure of the detonation wave. Different near-limit propagation regimes are also observed, including the spinning and galloping mode. Based on the present experimental results, an attempt is made to study an operational criterion for the propagation limits of stable and unstable detonations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  2. Manson N., Guénoche H.: Effect of charge diameter on the velocity of detonation waves in gas mixtures. Proc. Combust. Inst. 6, 631–639 (1957)

    Google Scholar 

  3. Gordon W.E., Mooradian A.J., Harper S.A.: Limit and spin effects in hydrogen–oxygen detonations. Proc. Combust. Inst. 7, 752–759 (1959)

    Google Scholar 

  4. Pusch W., Wagner H.-Gg.: Investigation of the dependence of the limits of detonability on tube diameter. Combust. Flame 6, 157–162 (1962)

    Article  Google Scholar 

  5. Manson N., Brochet C., Brossard J., Pujol Y.: Vibratory phenomena and instability of self-sustained detonations in gases. Proc. Combust. Inst. 9, 461–469 (1963)

    Google Scholar 

  6. Saint-Cloud J.P., Guerraud C., Brochet C., Manson N.: Some properties of very unstable detonations in gaseous mixtures. Astro. Acta 17, 487–498 (1972)

    Google Scholar 

  7. Moen I.O., Sulmistras A., Thomas G., Bjerketvedt D., Thibault P.: The influence of cellular regularity on the behaviour of gaseous detonations. Prog. Astronaut. Aero. 106, 220–243 (1985)

    Google Scholar 

  8. Dupré G., Peraldi O., Joannon J., Lee J.H.S., Knystautas R.: Limit criterion of detonation in circular tubes. Prog. Astronaut. Aeronaut. 133, 156–169 (1991)

    Google Scholar 

  9. Dupré G., Knystautas R., Lee J.H.: Near-limit propagation of detonation in tubes. Prog. Astronaut. Aeronaut. 106, 244–259 (1986)

    Google Scholar 

  10. Dupré G., Joannon J., Knystautas R., Lee J.H.: Unstable detonations in the near-limit regime in tubes. Proc. Combust. Inst. 23, 1813–1820 (1990)

    Google Scholar 

  11. Lee J.H.S.: Dynamic parameters of gaseous detonations. Ann. Rev. Fluid Mech. 16, 311–336 (1984)

    Article  Google Scholar 

  12. Manzhalei V.I.: Detonation regimes of gases in capillaries. Combust. Expl. Shock Waves 28(3), 93–99 (1991)

    Google Scholar 

  13. Lee J.J., Dupré G., Knystautas R., Lee J.H.: Doppler interferometry study of unstable detonations. Shock Waves 5, 175–181 (1995)

    Article  Google Scholar 

  14. Kitano S., Fukao M., Susa A., Tsuboi N., Hayashi A.K., Koshi M.: Spinning detonation and velocity deficit in small diameter tubes. Proc. Combust. Inst. 32(2), 2355–2362 (2009)

    Article  Google Scholar 

  15. Chao J., Ng H.D., Lee J.H.S.: Detonation limits in thin annular channels. Proc. Combust. Inst. 32, 2349–2354 (2009)

    Article  Google Scholar 

  16. Jackson, S., Lee, B.J., Huang, W., Pintgen, F., Karnesky, J., Liang, Z., Shepherd, J.E.: Experimental detonation propagation under high loss conditions. In: Proc. 22nd Int. Colloq. Dynamics Expl. Reac. Sys., Minsk, Belarus (2009)

  17. Zel’dovich Y.B.: On the theory of the propagation of detonation in gaseous systems. Sov. Phys. J.E.T.P. 10, 542 (1940)

    Google Scholar 

  18. Frolov S.M., Gelfand B.E.: Limit diameter of gas detonation propagation in tubes. Combust. Explosion Shock Waves 27(1), 113–117 (1991)

    Article  Google Scholar 

  19. Kusharin A.Y., Agafonov G.L., Popov O.E., Gelfand B.E.: Detonability of H2/CO/CO2/Air mixtures. Combust. Sci. Technol. 135(1), 85–98 (1998)

    Article  Google Scholar 

  20. Fay J.A.: Two-dimensional gaseous detonations: velocity deficit. Phys. Fluids 2, 283 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dove J., Tribbeck T.D.: Computational study of the kinetics of the hydrogen-oxygen reaction behind steady state shock waves. application to the composition limits and transverse stability of gaseous detonations. Astro. Acta 15, 387–397 (1970)

    Google Scholar 

  22. Kogarko S.M., Zel’dovich Y.B.: On detonation of gaseous mixtures. Dokl. Akad. Nauk SSSR 63, 553–556 (1948)

    Google Scholar 

  23. Moen I.O., Donato M., Knystautas R., Lee J.H.: The influence of confinement on the propagation of detonations near the detonability limits. Proc. Combust. Inst. 18, 1615–1622 (1981)

    Google Scholar 

  24. Radulescu M.I., Ng H.D., Lee J.H.S., Varatharajan B.: The effect of argon dilution on the stability of acetylene–oxygen detonations. Proc. Combust. Inst. 29, 2825–2831 (2002)

    Article  Google Scholar 

  25. Ng H.D., Radulescu M.I., Higgins A.J., Nikiforakis N., Lee J.H.S.: Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combust. Theory Modelling 9(3), 385–401 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhu Y.J., Chao J., Lee J.H.S.: An experimental investigation of the propagation mechanism of critical deflagration waves that lead to the onset of detonation. Proc. Combust. Inst. 31(2), 2455–2462 (2007)

    Article  Google Scholar 

  27. Kaneshige, M., Shepherd, J.E.: Detonation database. GALCIT Technical Report FM97. Web page at http://www.galcit.caltech.edu/detn_db/html/db.html (1997)

  28. Gooderum, P.: An experimental study of the turbulent boundary layer on a shock tube wall. Tech. Note 4243, NACA (1958)

  29. Klein, R., Krok, J.C., Shepherd, J.E.: Curved Quasi-steady Detonations: Asymptotic Analysis and Detailed Chemical Kinetics. GALCIT FM 95-04, California Institute of Technology (1995)

  30. Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics. Sandia National Laboratories Report, SAND89-8009 (1989)

  31. Dove J.E., Scroggie B.J., Semerjian H.: Velocity deficits and detonability limits of hydrogen–oxygen detonations. Acta Astro. 1, 345–359 (1974)

    Article  Google Scholar 

  32. Radulescu M.I., Lee J.H.S.: The failure mechanism of gaseous detonations: experiments in porous-walled tubes. Combust. Flame 131(1–2), 29–46 (2002)

    Article  Google Scholar 

  33. Varatharajan B., Williams F.A.: Chemical-kinetic descriptions of high-temperature ignition and detonation of acetylene-oxygen-diluent systems. Combust. Flame 124(4), 624–645 (2001)

    Article  Google Scholar 

  34. Varatharajan B., Williams F.A.: Ethylene ignition and detonation chemistry. Part 1. Detailed modeling and experimental comparison. J. Propul. Power 18, 344–351 (2002)

    Article  Google Scholar 

  35. Lutz A.E., Kee R.J., Miller J.A., Dwyer H.A., Oppenheim A.K.: Dynamics effects of autoignition centers for hydrogen and C1,2-hydrocarbon fuels. Proc. Combust. Inst. 22, 1683–1693 (1988)

    Google Scholar 

  36. Konnov, A.A.: Detailed reaction mechanism for small hydrocarbons combustion. Release 0.5. http://homepages.vub.ac.be/~akonnov/

  37. Laberge S., Knystautas R.K., Lee J.H.S.: Propagation and extinction of detonation waves in tube bundles. Prog. Astronaut. Aeronaut. 153, 381–396 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi Dick Ng.

Additional information

Communicated by S. Dorofeev.

This paper is based on work that was presented at the 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, Minsk, Belarus, July 27–31, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camargo, A., Ng, H.D., Chao, J. et al. Propagation of near-limit gaseous detonations in small diameter tubes. Shock Waves 20, 499–508 (2010). https://doi.org/10.1007/s00193-010-0253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-010-0253-3

Keywords

Navigation