Skip to main content
Log in

Experimental investigation of end-gas autoignition-to-detonation transition for an n-decane/O2/Ar mixture

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The transition between different combustion regimes is investigated experimentally for a stoichiometric argon-diluted n-decane/O2 mixture. The focus is put on the influence of initial temperature (T = 420–470 K) and pressure (P = 1.5–3 bar) on the regime transitions. Fast schlieren visualization (≥ 120 kHz) and high-speed pressure and temperature measurements are used to monitor the evolution of the reactive processes inside a combustion chamber of square cross-section (40 mm × 40 mm × 172 mm). Results for P ≥ 2.5 bar and the entire temperature range and for P = 2 bar and T ≥ 440 K show three distinct stages following the adiabatic compression of fresh gases induced by the propagation of a flame into the chamber/test section, namely a cool flame, a main heat release stage, and detonation onset. For P = 1.5 bar, however, only the first two stages of the process are observed in the temperature range studied. A two-stage autoignition phenomenon, typical of large hydrocarbons, occurs systematically in the end gas and generates consecutive reactive fronts. The transition to detonation appears to result from the acceleration of the aforementioned fronts toward the speed of sound in fresh gases. Notably, the compression history plays a key role in setting conditions for detonation onset. Our results are in agreement with classical transition maps available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Adapted from [24]

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

a :

Speed of sound

P :

Chamber pressure

R :

Hot spot radius

T :

End-gas temperature

U :

Reactive front velocity

X :

Mass fraction of the fresh gas remaining in the chamber at the onset of cool flame

Y i :

Mass fraction of species i

\( \epsilon \) :

Ratio between acoustic time ta and chemical induction time \( \tau_{\text{e}} \)

\( \rho \) :

Density

\( \phi \) :

Equivalence ratio of the mixture

\( \xi \) :

Ratio between the speed of sound and the reactive front velocity

\( \xi_{\text{l}} \) :

Limit front velocity inducing a thermal explosion in the Bradley formalism

\( \xi_{\text{u}} \) :

Limit front velocity inducing an autoignition regime in the Bradley formalism

\( \tau_{\text{e}} \) :

Chemical induction time

\( \varPi_{\text{CF}} \) :

Compression ratio between the pressure at the onset of cool flame and the initial pressure

\( \varPi_{\text{MHR}} \) :

Compression ratio between the pressure at the onset of the main heat release of autoignition and the initial pressure

II:

Thermodynamic conditions at the onset of cool flame

II′:

Thermodynamic conditions after the passage of cool flame

III:

Thermodynamic conditions at the onset of the main heat release of autoignition

IV:

Thermodynamic condition at the onset of detonation

ad:

Adiabatic conditions

eq:

Equilibrium state assuming an adiabatic combustion at constant volume

SP:

Reactive front associated with the main heat release of autoignition

u:

Fresh gases

b:

Burnt gases

CVC:

Constant-volume combustion

DME:

Dimethyl ether

MHR:

Main heat release of autoignition

NTC:

Negative temperature coefficient

PDE:

Pulsed detonation engine

RDE:

Rotating detonation engine

SEC:

Shockless explosion combustor

SWACER:

Shock wave amplification by coherent energy release

References

  1. Darecki, M., Edelstenne, C., Enders, T., Fernandez, E., Hartman, P., Herteman, J.P., Kerkloh, M., King, I., Ky, P., Mathieu, M., Orsi, G.: Flightpath 2050. Europe’s Vision for Aviation, European Commission Report (2011). https://doi.org/10.2777/50266

  2. Grönstedt, T., Xisto, C., Sethi, V., Rolt, A., García Rosa, N., Seitz, A., Yakinthos, K., Donnerhack, S., Newton, P., Tantot, N., Schmitz, O., Lundbladh, A.: Ultra low emission technology innovations for mid-century aircraft turbine engines. Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, vol. 3, Paper GT2016-56123, V003T06A001 (2016). https://doi.org/10.1115/GT2016-56123

  3. Bellenoue, M., Boust, B., Vidal, P., Zitoun, R., Gaillard, T., Davidenko, D., Leyko, M., Le Naour, B.: New combustion concepts to enhance the thermodynamic efficiency of propulsion engines. Aerosp. Lab J. AL11-12 (2016). https://doi.org/10.12762/2016.al11-12

  4. Hansmetzger, S., Zitoun, R., Vidal, P.: Detonation regimes in a small-scale RDE. 26th International Colloquium on the Dynamics of Explosions and Reactive Systems, Boston, MA, Paper 1037 (2017)

  5. Bobusch, B.C.: Fluidic devices for realizing the shockless explosion combustion process. PhD Thesis, TU Berlin (2015)

  6. Bobusch, B.C., Berndt, P., Paschereit, C.O., Klein, R.: Shockless explosion combustion: An innovative way of efficient constant volume combustion in gas turbines. Combust. Sci. Technol. 186(10–11), 1680–1689 (2014). https://doi.org/10.1080/00102202.2014.935624

    Article  Google Scholar 

  7. Kaiser, S., Seitz, A., Donnerhack, S., Lundbladh, A.: Composite cycle engine concept with hectopressure ratio. J. Propuls. Power 32(6), 1413–1421 (2016). https://doi.org/10.2514/1.B35976

    Article  Google Scholar 

  8. Michalski, Q., Boust, B., Bellenoue, M.: Influence of operating conditions and residual burned gas properties on cyclic operation of constant-volume combustion. In: King, R. (ed.) Active Flow and Combustion Control 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 141, pp. 215–233. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98177-2_14

    Chapter  Google Scholar 

  9. Michalski, Q., Kha, K., Boust, B., Robin, V., Bellenoue, M., Mura, A.: Joint numerical and experimental characterization of the turbulent reactive flow within a constant volume vessel. 2018 Joint Propulsion Conference, Cincinnati, OH, AIAA Paper 2018-4964 (2018). https://doi.org/10.2514/6.2018-4964

  10. Sorin, R., Zitoun, R., Desbordes, D.: Optimization of the deflagration to detonation transition: reduction of length and time of transition. Shock Waves 15(2), 137–145 (2006). https://doi.org/10.1007/s00193-006-0007-4

    Article  Google Scholar 

  11. Lee, J.H.S., Moen, I.O.: The mechanism of transition from deflagration to detonation in vapor cloud explosions. Prog. Energy Combust. Sci. 6(4), 359–389 (1980). https://doi.org/10.1016/0360-1285(80)90011-8

    Article  Google Scholar 

  12. Ciccarelli, G., Dorofeev, S.: Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci. 34(4), 499–550 (2008). https://doi.org/10.1016/j.pecs.2007.11.002

    Article  Google Scholar 

  13. Urtiew, P.A., Oppenheim, A.K.: Experimental observations of the transition to detonation in an explosive gas. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 295(1440), 13–28 (1966). https://doi.org/10.1098/rspa.1966.0223

    Article  Google Scholar 

  14. Lee, J.H., Knystautas, R., Yoshikawa, N.: Photochemical initiation of gaseous detonations. Acta Astronaut. 5(11–12), 971–982 (1978). https://doi.org/10.1016/0094-5765(78)90003-6

    Article  Google Scholar 

  15. Khokhlov, A.M., Oran, E.S.: Numerical simulation of detonation initiation in a flame brush: the role of hot spots. Combust. Flame 119(4), 400–416 (1999). https://doi.org/10.1016/S0010-2180(99)00058-9

    Article  Google Scholar 

  16. Oran, E.S., Gamezo, V.N.: Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 148(1–2), 4–47 (2007). https://doi.org/10.1016/j.combustflame.2006.07.010

    Article  Google Scholar 

  17. Di, H., He, X., Zhang, P., Wang, Z., Wooldridge, M.S., Law, C.K., Wang, C., Shuai, S., Wang, J.: Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane. Combust. Flame 161(10), 2531–2538 (2014). https://doi.org/10.1016/j.combustflame.2014.04.014

    Article  Google Scholar 

  18. Wang, Z., Qi, Y., Liu, H., Zhang, P., He, X., Wang, J.: Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder. Shock Waves 26(5), 687–691 (2016). https://doi.org/10.1007/s00193-016-0677-5

    Article  Google Scholar 

  19. Ben Houidi, M., Sotton, J., Bellenoue, M.: Interpretation of auto-ignition delays from RCM in the presence of temperature heterogeneities: Impact on combustion regimes and negative temperature coefficient behavior. Fuel 186, 476–495 (2016). https://doi.org/10.1016/j.fuel.2016.08.089

    Article  Google Scholar 

  20. Grogan, K.P., Scott Goldsborough, S., Ihme, M.: Ignition regimes in rapid compression machines. Combust. Flame 162(8), 3071–3080 (2015). https://doi.org/10.1016/j.combustflame.2015.03.020

    Article  Google Scholar 

  21. Wang, Z., Qi, Y., He, X., Wang, J., Shuai, S., Law, C.K.: Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation. Fuel 144, 222–227 (2015). https://doi.org/10.1016/j.fuel.2014.12.061

    Article  Google Scholar 

  22. Qi, Y., He, X., Wang, Z., Wang, J., Zhang, H., Jiang, Y.: An experimental investigation of super knock combustion mode using a one-dimensional constant volume bomb. Int. J. Hydrog. Energy 40(5), 2377–2385 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.132

    Article  Google Scholar 

  23. Zhou, L., Kang, R., Wei, H., Feng, D., Hua, J., Pan, J., Chen, R.: Experimental analysis of super-knock occurrence based on a spark ignition engine with high compression ratio. Energy 165, 68–75 (2018). https://doi.org/10.1016/j.energy.2018.09.166

    Article  Google Scholar 

  24. Quintens, H., Strozzi, C., Zitoun, R., Bellenoue, M.: Deflagration/autoignition/detonation transition induced by flame propagation in an N-decane/O2/Ar mixture. Flow Turbul. Combust. 102, 735–755 (2019). https://doi.org/10.1007/s10494-018-9980-9

    Article  Google Scholar 

  25. Pan, J., Shu, G., Zhao, P., Wei, H., Chen, Z.: Interactions of flame propagation, auto-ignition and pressure wave during knocking combustion. Combust. Flame 164, 319–328 (2016). https://doi.org/10.1016/j.combustflame.2015.11.030

    Article  Google Scholar 

  26. Pan, J., Wei, H., Shu, G., Chen, R.: Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions. Combust. Flame 185, 63–74 (2017). https://doi.org/10.1016/j.combustflame.2017.07.004

    Article  Google Scholar 

  27. Dai, P., Chen, Z., Chen, S., Ju, Y.: Numerical experiments on reaction front propagation in n-heptane/air mixture with temperature gradient. Proc. Combust. Inst. 35(3), 3045–3052 (2015). https://doi.org/10.1016/j.proci.2014.06.102

    Article  Google Scholar 

  28. Dai, P., Qi, C., Chen, Z.: Effects of initial temperature on autoignition and detonation development in dimethyl ether/air mixtures with temperature gradient. Proc. Combust. Inst. 36(3), 3643–3650 (2017). https://doi.org/10.1016/j.proci.2016.08.014

    Article  Google Scholar 

  29. Zander, L., Tornow, G., Klein, R., Djordjevic, N.: Knock control in shockless explosion combustion by extension of excitation time. In: King, R. (ed.) Active Flow and Combustion Control 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 141, pp. 151–166. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98177-2_10

    Chapter  Google Scholar 

  30. Zeldovich, Y.B.: Regime classification of an exothermic reaction with nonuniform initial conditions. Combust. Flame 39(2), 211–214 (1980). https://doi.org/10.1016/0010-2180(80)90017-6

    Article  Google Scholar 

  31. Kassoy, D.R.: The Zeldovich spontaneous reaction wave propagation concept in the fast/modest heating limits. J. Fluid Mech. 791, 439–463 (2016). https://doi.org/10.1017/jfm.2015.756

    Article  MathSciNet  MATH  Google Scholar 

  32. Kapila, A.K., Short, M.: Nondiffusive hot spot in a confined, narrow domain. J. Eng. Math. 45(3–4), 335–366 (2003). https://doi.org/10.1023/A:1022610730167

    Article  MathSciNet  MATH  Google Scholar 

  33. Short, M.: On the critical conditions for the initiation of a detonation in a nonuniformly perturbed reactive fluid. Math. Appl. 57(5), 1242–1280 (1997). https://doi.org/10.1137/S0036139995284693

    Article  MathSciNet  MATH  Google Scholar 

  34. Kapila, A.K., Schwendeman, D.W., Quirk, J.J., Hawa, T.: Mechanisms of detonation formation due to a temperature gradient. Combust. Theory Model. 6(4), 553–594 (2002). https://doi.org/10.1088/1364-7830/6/4/302

    Article  MathSciNet  MATH  Google Scholar 

  35. Kulkarni, R., Zellhuber, M., Polifke, W.: LES based investigation of autoignition in turbulent co-flow configurations. Combust. Theory Model. 17(2), 224–259 (2013). https://doi.org/10.1080/13647830.2012.739711

    Article  Google Scholar 

  36. Sankaran, R., Im, H.G., Hawkes, E.R., Chen, J.H.: The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen-air mixture. Proc. Combust. Inst. 30(1), 875–882 (2005). https://doi.org/10.1016/j.proci.2004.08.176

    Article  Google Scholar 

  37. Reinbacher, F., Regele, J.D.: Influence of smooth temperature variation on hotspot ignition. Combust. Theory Model. 22, 110–130 (2018). https://doi.org/10.1080/13647830.2017.1381347

    Article  MathSciNet  Google Scholar 

  38. Gu, X.J., Emerson, D.R., Bradley, D.: Modes of reaction front propagation from hot spots. Combust. Flame 133(1–2), 63–74 (2003). https://doi.org/10.1016/S0010-2180(02)00541-2

    Article  Google Scholar 

  39. Westbrook, C.K., Pitz, W.J., Herbinet, O., Curran, H.J., Silke, E.J.: A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust. Flame 156(1), 181–199 (2009). https://doi.org/10.1016/j.combustflame.2008.07.014

    Article  Google Scholar 

  40. Quintens, H.: L’auto-inflammation dans les mécanismes de transition de régime de combustion, de la déflagration vers la détonation. PhD Thesis, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique, Poitiers (2019)

  41. Luijten, C.C.M., Doosje, E., de Goey, L.P.H.: Accurate analytical models for fractional pressure rise in constant volume combustion. Int. J. Therm. Sci. 48(6), 1213–1222 (2009). https://doi.org/10.1016/j.ijthermalsci.2008.12.020

    Article  Google Scholar 

  42. Bates, L., Bradley, D., Paczko, G., Peters, N.: Engine hot spots: Modes of auto-ignition and reaction propagation. Combust. Flame 166, 80–85 (2016). https://doi.org/10.1016/j.combustflame.2016.01.002

    Article  Google Scholar 

  43. Bradley, D., Morley, C., Gu, X.J., Emerson, D.R.: Amplified pressure waves during autoignition: Relevance to CAI engines. SAE Powertrain & Fluid Systems Conference & Exhibition, SAE Technical Paper 2002-01-2868 (2002). https://doi.org/10.4271/2002-01-2868

  44. Bradley, D., Kalghatgi, G.T.: Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines. Combust. Flame 156(12), 2307–2318 (2009). https://doi.org/10.1016/j.combustflame.2009.08.003

    Article  Google Scholar 

  45. Bates, L., Bradley, D.: Deflagrative, auto-ignitive, and detonative propagation regimes in engines. Combust. Flame 175, 118–122 (2017). https://doi.org/10.1016/j.combustflame.2016.05.023

    Article  Google Scholar 

  46. Kalghatgi, G.T., Bradley, D.: Pre-ignition and ‘super-knock’ in turbo-charged spark-ignition engines. Int. J. Engine Res. 13(4), 399–414 (2012). https://doi.org/10.1177/1468087411431890

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the CAPA Chair program on alternative combustion modes for air-breathing propulsion supported by SAFRAN, MBDA France, and the Agence Nationale de la Recherche. The authors gratefully acknowledge Alain Claverie for his help with the optical diagnostics, Florent Virot, Aimad Er-Raiy, and Quentin Michalski for their help with the numerical simulations, and Josue Melguizo for his scientific contribution and his help to improve this paper readability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Quintens.

Additional information

Communicated by G. Ciccarelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintens, H., Strozzi, C., Zitoun, R. et al. Experimental investigation of end-gas autoignition-to-detonation transition for an n-decane/O2/Ar mixture. Shock Waves 30, 287–303 (2020). https://doi.org/10.1007/s00193-020-00944-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-020-00944-1

Keywords

Navigation