Skip to main content

Advertisement

Log in

Animal models for fracture treatment in osteoporosis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Demographic changes in the age structure of occidental populations are giving rise to osteoporosis and associated fractures, which are becoming a major public health burden. Various animal models have been established and used to investigate the pathogenesis of osteoporosis and to facilitate the preclinical testing of new treatment options such as antiresorptive drugs. Although osteoporosis can be induced in animals, spontaneous fractures without adequate trauma were only found in nonhuman primates. An animal model designed to investigate new ways to treat fractures of osteoporotic bone has to fulfill requirements that are very different from those of pharmacological testing. The aspects of major interest in orthopedic applications are bone fragility, efficacy of implant fixation and bone healing. Existing animal models for osteoporosis were critically reviewed focusing on these aspects. The advantages and disadvantages of the models with regard to their application in the testing of new fracture-fixation devices or biological approaches to stimulate bone healing are discussed. Ovariectomy alone does not cause the bone loss seen in osteoporotic human patients. New models to simulate fracture of osteoporotic bone need to be explored and used to address the specific aims of an experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyle P, Leon ME, Autier P (2001) Epidemiology of osteoporosis. J Epidemiol Biostat 6:185–192

    Article  Google Scholar 

  2. Cummings SR, Black DM, Rubin SM (1989) Lifetime risks of hip, Colles’, or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med 149:2445–2448

    Article  CAS  PubMed  Google Scholar 

  3. Barrios C, Brostrom LA, Stark A, Walheim G (1993) Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma 7:438–442

    CAS  PubMed  Google Scholar 

  4. Cornell CN (2003) Internal fracture fixation in patients with osteoporosis. J Am Acad Orthop Surg 11:109–119

    Google Scholar 

  5. Sterck JG, Klein-Nulend J, Lips P, Burger EH (1998) Response of normal and osteoporotic human bone cells to mechanical stress in vitro. Am J Physiol 274:E1113–E1120

    CAS  PubMed  Google Scholar 

  6. Haberland M, Schilling AF, Rueger JM, Amling M (2001) Brain and bone: central regulation of bone mass. A new paradigm in skeletal biology. J Bone Joint Surg Am 83:1871–1876

    Google Scholar 

  7. Lill CA, Hesseln J, Schlegel U, Eckhardt C, Goldhahn J, Schneider E (2003) Biomechanical evaluation of healing in a non-critical defect in a large animal model of osteoporosis. J Orthop Res 21:836–842

    Article  CAS  PubMed  Google Scholar 

  8. Namkung-Matthai H, Appleyard R, Jansen J, Hao LJ, Maastricht S, Swain M, Mason RS, Murrell GA, Diwan AD, Diamond T (2001) Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone 28:80–86

    Article  CAS  PubMed  Google Scholar 

  9. Walsh WR, Sherman P, Howlett CR, Sonnabend DH, Ehrlich MG (1997) Fracture healing in a rat osteopenia model. Clin Orthop 218–227

  10. Food and Drug Administration (1994) Guidelines for preclinical and clinical evaluation of agents used in the prevention or treatment of postmenopausal osteoporosis. FDA Division of Metabolism and Endocrine Drug Products, Washington, DC

  11. US National Institutes of Health (2000) Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement 17:1–45

    Google Scholar 

  12. Martin RB, Butcher RL, Sherwood LL, Buckendahl P, Boyd RD, Farris D, Sharkey N, Dannucci G (1987) Effects of ovariectomy in beagle dogs. Bone 8:23–31

    Google Scholar 

  13. Shen V, Dempster DW, Birchman R, Mellish RW, Church E, Kohn D, Lindsay R (1992) Lack of changes in histomorphometric, bone mass, and biochemical parameters in ovariohysterectomized dogs. Bone 13:311–316

    Google Scholar 

  14. Kasra M, Grynpas MD (1994) Effect of long-term ovariectomy on bone mechanical properties in young female cynomolgus monkeys. Bone 15:557–561

    Google Scholar 

  15. Wronski TJ, Dann LM, Scott KS, Cintron M (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45:360–366

    CAS  PubMed  Google Scholar 

  16. Thompson DD, Simmons HA, Pirie CM, Ke HZ (1995) FDA guidelines and animal models for osteoporosis. Bone 17:125S–133S

    Article  CAS  PubMed  Google Scholar 

  17. Miller SC, Wronski TJ (1993) Long-term osteopenic changes in cancellous bone structure in ovariectomized rats. Anat Rec 236:433–441

    CAS  PubMed  Google Scholar 

  18. Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670

    Article  CAS  PubMed  Google Scholar 

  19. Greenspan SL, Maitl-Ramsey L, Myers E (1996) Classification of osteoporosis in the elderly is dependent on site-specific analysis. Calcif Tissue Int 58:409–414

    Article  CAS  PubMed  Google Scholar 

  20. Li B, Aspden RM (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 12:641–651

    Google Scholar 

  21. Niedhart C, Braun K, Graf Stenbock-Fermor N, Bours F, Schneider P, Zilkens KW, Niethard FU (2003) [The value of peripheral quantitative computed tomography (pQCT) in the diagnosis of osteoporosis] Z Orthop Ihre Grenzgeb 141:135–142

  22. Simmons A, Simpson DE, O’Doherty MJ, Barrington S, Coakley AJ (1997) The effects of standardization and reference values on patient classification for spine and femur dual-energy X-ray absorptiometry. Osteoporos Int 7:200–206

    Google Scholar 

  23. Jerome CP, Turner CH, Lees CJ (1997) Decreased bone mass and strength in ovariectomized cynomolgus monkeys ( Macaca fascicularis). Calcif Tissue Int 60:265–270

    Google Scholar 

  24. Balena R, Toolan BC, Shea M, Markatos A, Myers ER, Lee SC, Opas EE, Seedor JG, Klein H, Frankenfield D et al (1993) The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest 92:2577–2586

    Google Scholar 

  25. Lill CA, Gerlach UV, Eckhardt C, Goldhahn J, Schneider E (2002) Bone changes due to glucocorticoid application in an ovariectomized animal model for fracture treatment in osteoporosis. Osteoporos Int 13:407–414

    Google Scholar 

  26. Vanderschueren D, Van Herck E, Schot P, Rush E, Einhorn T, Geusens P, Bouillon R (1993) The aged male rat as a model for human osteoporosis: evaluation by nondestructive measurements and biomechanical testing. Calcif Tissue Int 53:342–347

    Google Scholar 

  27. Bagi CM, Ammann P, Rizzoli R, Miller SC (1997) Effect of estrogen deficiency on cancellous and cortical bone structure and strength of the femoral neck in rats. Calcif Tissue Int 61:336–344

    Google Scholar 

  28. Chen H, Shoumura S, Emura S (2004) Ultrastructural changes in bones of the senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Histol Histopathol 19:677–685

    Google Scholar 

  29. Dickenson RP, Hutton WC, Stott JR (1981) The mechanical properties of bone in osteoporosis. J Bone Joint Surg Br 63:233–238

    Google Scholar 

  30. Mosekilde L, Danielsen CC, Knudsen UB (1993) The effect of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone 14:1–6

    Google Scholar 

  31. Peng Z, Tuukkanen J, Zhang H, Jamsa T, Vaananen HK (1994) The mechanical strength of bone in different rat models of experimental osteoporosis. Bone 15:523–532

    Google Scholar 

  32. Silva MJ, Brodt MD, Uthgenannt BA (2004) Morphological and mechanical properties of caudal vertebrae in the SAMP6 mouse model of senile osteoporosis. Bone 35:425–431

    Google Scholar 

  33. Silva MJ, Brodt MD, Ettner SL (2002) Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole-bone strength and resistance to fracture. J Bone Miner Res 17:1597–1603

    PubMed  Google Scholar 

  34. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333

    Google Scholar 

  35. Kimmel DB, Recker RR, Gallagher JC, Vaswani AS, Aloia JF (1990) A comparison of iliac bone histomorphometric data in post-menopausal osteoporotic and normal subjects. Bone Miner 11:217–235

    Google Scholar 

  36. Dalle CL, Arlot ME, Chavassieux PM, Roux JP, Portero NR, Meunier PJ (2001) Comparison of trabecular bone microarchitecture and remodeling in glucocorticoid-induced and postmenopausal osteoporosis. J Bone Miner Res 16:97–103

    PubMed  Google Scholar 

  37. Ito M, Nishida A, Nakamura T, Uetani M, Hayashi K (2002) Differences of three-dimensional trabecular microstructure in osteopenic rat models caused by ovariectomy and neurectomy. Bone 30:594–598

    Article  CAS  PubMed  Google Scholar 

  38. Laib A, Kumer JL, Majumdar S, Lane NE (2001) The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporos Int 12:936–941

    Google Scholar 

  39. Lane NE, Haupt D, Kimmel DB, Modin G, Kinney JH (1999) Early estrogen replacement therapy reverses the rapid loss of trabecular bone volume and prevents further deterioration of connectivity in the rat. J Bone Miner Res 14:206–214

    Google Scholar 

  40. Newman E, Turner AS, Wark JD (1995) The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 16:277S–284S

    Google Scholar 

  41. Chavassieux P, Garnero P, Duboeuf F, Vergnaud P, Brunner-Ferber F, Delmas PD, Meunier PJ (2001) Effects of a new selective estrogen receptor modulator (MDL 103,323) on cancellous and cortical bone in ovariectomized ewes: a biochemical, histomorphometric, and densitometric study. J Bone Miner Res 16:89–96

    Google Scholar 

  42. Stromsoe K (2004) Fracture fixation problems in osteoporosis. Injury 35:107–113

    Google Scholar 

  43. Seebeck J, Goldhahn J, Stadele H, Messmer P, Morlock MM, Schneider E (2004) Effect of cortical thickness and cancellous bone density on the holding strength of internal fixator screws. J Orthop Res 22:1237–1242

    Google Scholar 

  44. Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691

    CAS  PubMed  Google Scholar 

  45. Feik SA, Thomas CD, Clement JG (1997) Age-related changes in cortical porosity of the midshaft of the human femur. J Anat 191 (Part 3):407–416

    Google Scholar 

  46. Roschger P, Rinnerthaler S, Yates J, Rodan GA, Fratzl P, Klaushofer K (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29:185–191

    Article  Google Scholar 

  47. Ritzel H, Amling M, Posl M, Hahn M, Delling G (1997) The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res 12:89–95

    Google Scholar 

  48. Lauritzen DB, Balena R, Shea M, Seedor JG, Markatos A, Le HM, Toolan BC, Myers ER, Rodan GA, Hayes WC (1993) Effects of combined prostaglandin and alendronate treatment on the histomorphometry and biomechanical properties of bone in ovariectomized rats. J Bone Miner Res 8:871–879

    Google Scholar 

  49. Ibbotson KJ, Orcutt CM, D’Souza SM, Paddock CL, Arthur JA, Jankowsky ML, Boyce RW (1992) Contrasting effects of parathyroid hormone and insulin-like growth factor I in an aged ovariectomized rat model of postmenopausal osteoporosis. J Bone Miner Res 7:425–432

    Google Scholar 

  50. Sietsema WK (1995) Animal models of cortical porosity. Bone 17:297S–305S

    Google Scholar 

  51. Wilson AK, Bhattacharyya MH, Miller S, Mani A, Sacco-Gibson N (1998) Ovariectomy-induced changes in aged beagles: histomorphometry of rib cortical bone. Calcif Tissue Int 62:237–243

    Google Scholar 

  52. Burr DB, Hirano T, Turner CH, Hotchkiss C, Brommage R, Hock JM (2001) Intermittently administered human parathyroid hormone(1–34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res 16:157–165

    Google Scholar 

  53. Kubo T, Shiga T, Hashimoto J, Yoshioka M, Honjo H, Urabe M, Kitajima I, Semba I, Hirasawa Y (1999) Osteoporosis influences the late period of fracture healing in a rat model prepared by ovariectomy and low calcium diet. J Steroid Biochem Mol Biol 68:197–202

    Article  CAS  PubMed  Google Scholar 

  54. Meyer RA Jr, Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM (2001) Age and ovariectomy impair both the normalization of mechanical properties and the accretion of mineral by the fracture callus in rats. J Orthop Res 19:428–435

    Google Scholar 

  55. Xu SW, Yu R, Zhao GF, Wang JW (2003) Early period of fracture healing in ovariectomized rats. Chin J Traumatol 6:160–166

    Google Scholar 

  56. Kim WY, Han CH, Park JI, Kim JY (2001) Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. Int Orthop 25:360–362

    Article  CAS  PubMed  Google Scholar 

  57. Rodriguez JP, Garat S, Gajardo H, Pino AM, Seitz G (1999) Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem 75:414–423

    Google Scholar 

  58. Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J (2000) Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem 79:557–565

    Google Scholar 

  59. Sterck JG, Klein-Nulend J, Lips P, Burger EH (1998) Response of normal and osteoporotic human bone cells to mechanical stress in vitro. Am J Physiol 274:E1113–E1120

    CAS  PubMed  Google Scholar 

  60. Torricelli P, Fini M, Giavaresi G, Rocca M, Pierini G, Giardino R (2000) Isolation and characterization of osteoblast cultures from normal and osteopenic sheep for biomaterials evaluation. J Biomed Mater Res 52:177–182

    Google Scholar 

  61. Torricelli P, Fini M, Giavaresi G, Giardino R (2003) Osteoblasts cultured from osteoporotic bone: a comparative investigation on human and animal-derived cells. Artif Cells Blood Substit Immobil Biotechnol 31:263–277

    Google Scholar 

  62. Cerroni AM, Tomlinson GA, Turnquist JE, Grynpas MD (2000) Bone mineral density, osteopenia, and osteoporosis in the rhesus macaques of Cayo Santiago. Am J Phys Anthropol 113:389–410

    Google Scholar 

  63. Jerome CP, Peterson PE (2001) Nonhuman primate models in skeletal research. Bone 29:1–6

    Google Scholar 

  64. Faugere MC, Friedler RM, Fanti P, Malluche HH (1990) Bone changes occurring early after cessation of ovarian function in beagle dogs: a histomorphometric study employing sequential biopsies. J Bone Miner Res 5:263–272

    Google Scholar 

  65. Boyce RW, Franks AF, Jankowsky ML, Orcutt CM, Piacquadio AM, White JM, Bevan JA (1990) Sequential histomorphometric changes in cancellous bone from ovariohysterectomized dogs. J Bone Miner Res 5:947–953

    Google Scholar 

  66. Lill CA, Fluegel AK, Schneider E (2000) Sheep model for fracture treatment in osteoporotic bone: a pilot study about different induction regimens. J Orthop Trauma 14:559–565

    Article  CAS  PubMed  Google Scholar 

  67. Lill CA, Fluegel AK, Schneider E (2002) Effect of ovariectomy, malnutrition and glucocorticoid application on bone properties in sheep: a pilot study. Osteoporos Int 13:480–486

    Google Scholar 

  68. Turner AS, Alvis M, Myers W, Stevens ML, Lundy MW (1995) Changes in bone mineral density and bone-specific alkaline phosphatase in ovariectomized ewes. Bone 17:395S–402S

    Article  CAS  PubMed  Google Scholar 

  69. Spencer GR (1979) Pregnancy and lactational osteoporosis. Animal model: porcine lactational osteoporosis. Am J Pathol 95:277–280

    Google Scholar 

  70. Chavassieux P, Buffet A, Vergnaud P, Garnero P, Meunier PJ (1997) Short-term effects of corticosteroids on trabecular bone remodeling in old ewes. Bone 20:451–455

    Google Scholar 

  71. Palle S, Vico L, Bourrin S, Alexandre C (1992) Bone tissue response to four-month antiorthostatic bedrest: a bone histomorphometric study. Calcif Tissue Int 51:189–194

    Google Scholar 

  72. Damrongrungruang T, Kuroda S, Kondo H, Aoki K, Ohya K, Kasugai S (2004) A simple murine model for immobilization osteopenia. Clin Orthop 244–251

  73. Jee WS, Ma Y (1999) Animal models of immobilization osteopenia. Morphologie 83:25–34

    Google Scholar 

  74. Uhthoff HK, Jaworski ZF (1978) Bone loss in response to long-term immobilisation. J Bone Joint Surg Br 60:420–429

    Google Scholar 

  75. Young DR, Niklowitz WJ, Brown RJ, Jee WS (1986) Immobilization-associated osteoporosis in primates. Bone 7:109–117

    Google Scholar 

  76. Takeda T (1999) Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging 20:105–110

    Google Scholar 

  77. Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC (1996) Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J Clin Invest 97:1732–1740

    CAS  PubMed  Google Scholar 

  78. Campbell AW, Bain WE, McRae AF, Broad TE, Johnstone PD, Dodds KG, Veenvliet BA, Greer GJ, Glass BC, Beattie AE et al (2003) Bone density in sheep: genetic variation and quantitative trait loci localization. Bone 33:540–548

    Google Scholar 

  79. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  CAS  PubMed  Google Scholar 

  80. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  CAS  PubMed  Google Scholar 

  81. Haberland M, Schilling AF, Rueger JM, Amling M (2001) Brain and bone: central regulation of bone mass. A new paradigm in skeletal biology. J Bone Joint Surg Am 83:1871–1876

    Google Scholar 

  82. Macpherson P, Matheson MS (1979) Comparison of calcification of pineal, habenular commissure and choroid plexus on plain films and computed tomography. Neuroradiology 18:67–72

    Google Scholar 

  83. Sandyk R, Anastasiadis PG, Anninos PA, Tsagas N (1992) Is postmenopausal osteoporosis related to pineal gland functions? Int J Neurosci 62:215–225

    Google Scholar 

  84. Harms HM, Neubauer O, Kayser C, Wustermann PR, Horn R, Brosa U, Schlinke E, Kulpmann WR, von zur MA, Hesch RD (1994) Pulse amplitude and frequency modulation of parathyroid hormone in early postmenopausal women before and on hormone replacement therapy. J Clin Endocrinol Metab 78:48–52

    Google Scholar 

  85. Ostrowska Z, Kos-Kudla B, Swietochowska E, Marek B, Kajdaniuk D, Gorski J (2001) Assessment of the relationship between dynamic pattern of nighttime levels of melatonin and chosen biochemical markers of bone metabolism in a rat model of postmenopausal osteoporosis. Neuro Endocrinol Lett 22:129–136

    Google Scholar 

  86. Ostrowska Z, Kos-Kudla B, Marek B, Kajdaniuk D, Staszewicz P, Szapska B, Strzelczyk J (2002) The influence of pinealectomy and melatonin administration on the dynamic pattern of biochemical markers of bone metabolism in experimental osteoporosis in the rat. Neuro Endocrinol Lett 23 [Suppl 1]:104–109

  87. Koyama H, Nakade O, Takada Y, Kaku T, Lau KH (2002) Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 17:1219–1229

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Egermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egermann, M., Goldhahn, J. & Schneider, E. Animal models for fracture treatment in osteoporosis. Osteoporos Int 16 (Suppl 2), S129–S138 (2005). https://doi.org/10.1007/s00198-005-1859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-1859-7

Keywords

Navigation