Skip to main content
Log in

Tibial or hip BMD predict clinical fracture risk equally well: results from a prospective study in 700 elderly Swiss women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In a randomly selected cohort of Swiss community-dwelling elderly women prospectively followed up for 2.8 ± 0.6 years, clinical fractures were assessed twice yearly. Bone mineral density (BMD) measured at tibial diaphysis (T-DIA) and tibial epiphysis (T-EPI) using dual-energy X-ray absorptiometry (DXA) was shown to be a valid alternative to lumbar spine or hip BMD in predicting fractures.

Introduction

A study was carried out to determine whether BMD measurement at the distal tibia sites of T-EPI and T-DIA is predictive of clinical fracture risk.

Methods

In a predefined representative cohort of Swiss community-dwelling elderly women aged 70–80 years included in the prospective, multi-centre Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture risk (SEMOF) study, fracture risk profile was assessed and BMD measured at the lumbar spine (LS), hip (HIP) and tibia (T-DIA and T-EPI) using DXA. Thereafter, clinical fractures were reported in a bi-yearly questionnaire.

Results

During 1,786 women-years of follow-up, 68 clinical fragility fractures occurred in 61 women. Older age and previous fracture were identified as risk factors for the present fractures. A decrease of 1 standard deviation in BMD values yielded a 1.5-fold (HIP) to 1.8-fold (T-EPI) significant increase in clinical fragility fracture hazard ratio (adjusted for age and previous fracture). All measured sites had comparable performance for fracture prediction (area under the curve range from 0.63 [LS] to 0.68 [T-EPI]).

Conclusion

Fracture risk prediction with BMD measurements at T-DIA and T-EPI is a valid alternative to BMD measurements at LS or HIP for patients in whom these sites cannot be accessed for clinical, technical or practical reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Society for Clinical Densitometry (ISCD) official positions 2007. Available at http://www.iscd.org/Visitors/positions/OfficialPositionsText.cfm. Accessed October 24, 2008

  2. Casez JP, Troendle A, Lippuner K, Jaeger P (1994) Bone mineral density at distal tibia using dual-energy X-ray absorptiometry in normal women and in patients with vertebral osteoporosis or primary hyperparathyroidism. J Bone Miner Res 9(12):1851–1857

    PubMed  CAS  Google Scholar 

  3. Zehnder Y, Lüthi M, Michel D et al (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15(3):180–189

    Article  PubMed  Google Scholar 

  4. Zehnder Y, Risi S, Michel D et al (2004) Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res 19(7):1067–1074

    Article  PubMed  CAS  Google Scholar 

  5. Krieg MA, Cornuz J, Ruffieux C (2003) Comparison of three bone ultrasounds for the discrimination of subjects with and without osteoporotic fractures among 7562 elderly women. J Bone Miner Res 18(7):1261–1266

    Article  PubMed  CAS  Google Scholar 

  6. Terwee CB, Mokkink LB, Steultjens MP, Dekker J (2006) Performance-based methods for measuring the physical function of patients with osteoarthritis of the hip or knee: a systematic review of measurement properties. Rheumatology (Oxford) 45(7):890–902

    Article  CAS  Google Scholar 

  7. Looker AC, Wahner HW, Dunn WL et al (1995) Proximal femur bone mineral levels of US adults. Osteoporos Int 5(5):389–409

    Article  PubMed  CAS  Google Scholar 

  8. Looker AC, Orwoll ES, Johnston CC Jr et al (1997) Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12(11):1761–1768

    Article  PubMed  CAS  Google Scholar 

  9. Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8(5):468–489

    Article  PubMed  CAS  Google Scholar 

  10. Ruetsche AG, Kneubuehl R, Birkhaeuser MH, Lippuner K (2005) Cortical and trabecular bone mineral density in transsexuals after long-term cross-sex hormonal treatment: a cross-sectional study. Osteoporos Int 16(7):791–798

    Article  PubMed  Google Scholar 

  11. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  PubMed  CAS  Google Scholar 

  12. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259

    PubMed  CAS  Google Scholar 

  13. Miller PD, Siris ES, Barrett-Connor E et al (2002) Prediction of fracture risk in postmenopausal white women with peripheral bone densitometry: evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 17(12):2222–2230

    Article  PubMed  Google Scholar 

  14. Stone KL, Seeley DG, Lui LY et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18(11):1947–1954

    Article  PubMed  Google Scholar 

  15. Seeman E, Wahner HW, Offord KP, Kumar R, Johnson WJ, Riggs BL (1982) Differential effects of endocrine dysfunction on the axial and the appendicular skeleton. J Clin Invest 69(6):1302–1309

    Article  PubMed  CAS  Google Scholar 

  16. Silverberg SJ, Shane E, de la Cruz L et al (1989) Skeletal disease in primary hyperparathyroidism. J Bone Miner Res 4(3):283–291

    PubMed  CAS  Google Scholar 

  17. Khosla S, Melton J 3rd (2002) Fracture risk in primary hyperparathyroidism. J Bone Miner Res 17(Suppl 2):N103–N107

    PubMed  Google Scholar 

  18. Mottet JJ, Horber FF, Casez JP, Descoeudres C, Jaeger P (1996) Evidence for preservation of cortical bone mineral density in patients on continuous ambulatory peritoneal dialysis. J Bone Miner Res 11(1):96–104

    PubMed  CAS  Google Scholar 

  19. Jaeger P, Lippuner K, Casez JP, Hess B, Ackermann D, Hug C (1994) Low bone mass in idiopathic renal stone formers: magnitude and significance. J Bone Miner Res 9(10):1525–1532

    Article  PubMed  CAS  Google Scholar 

  20. Leslie WD, Lix LM, Tsang JF, Caetano PA, Manitoba Bone Density Program (2007) Single-site vs multisite bone density measurement for fracture prediction. Arch Intern Med 167(15):1641–1647

    Article  PubMed  Google Scholar 

  21. Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Philippe Kress for his invaluable contribution to the manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lippuner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popp, A.W., Senn, C., Franta, O. et al. Tibial or hip BMD predict clinical fracture risk equally well: results from a prospective study in 700 elderly Swiss women. Osteoporos Int 20, 1393–1399 (2009). https://doi.org/10.1007/s00198-008-0808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0808-7

Keywords

Navigation