Skip to main content

Advertisement

Log in

Thinking inside and outside the envelopes of bone

Dedicated to PDD

  • Personal View
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Bone modeling and remodeling is the final common pathway expressing all genetic and environmental factors that influence the attainment and maintenance of bone’s material and structural strength. Modeling and remodeling require a surface, and during growth this cellular machinery fashions bone’s external size, shape, and internal architecture by depositing bone on, and removing bone from, both its periosteal (external) and endosteal (internal) envelopes. Bone is distributed and redistributed to achieve strength commensurate with its loading requirements.

Methods

Advancing age is associated with: (1) a reduction in the volume of bone resorbed by each basic multicellular unit (BMU); (2) an even greater reduction in the volume of bone formed by each BMU so that each remodeling event, whether adaptive or reparative, removes bone from the bone; (3) increased remodeling (number of BMUs) on the three (endocortical, intracortical, and trabecular) components of its endosteal envelope in midlife in women and late in life in both sexes; and (4) reduced bone formation on the periosteal envelope. The net effect is cortical thinning, increased intracortical porosity, trabecular thinning, and loss of connectivity.

Results

While remodeling intensity on an envelope determines structure (e.g., trabecular perforations), the surface area of the envelope determines remodeling intensity, and, so, structure. High remodeling on trabecular surfaces decreases as trabeculae (with their surface) are lost. Conversely, remodeling on the endocortical and intracortical envelopes increases their surface area, so remodeling intensity increases and bone loss becomes predominantly cortical.

Conclusions

Understanding bone structural strength and its decay and the effects of genetic factors, exercise, nutrition, and drug therapy on bone requires thinking outside and inside these envelopes; their absolute and relative movements during growth and aging determine bone structure and its strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Currey J (2002) Bones. Structure and mechanics. Princeton UP, Princeton, pp 1–380

    Google Scholar 

  2. Parfitt AM (1996) Skeletal heterogeneity and the purposes of bone remodelling: implications for the understanding of osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, San Diego, pp 315–339

    Google Scholar 

  3. Haapasalo H, Kontulainen S, Sievanen H, Kannus P, Jarvinen M, Vuori I (2000) Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone 27:351–357

    Article  PubMed  CAS  Google Scholar 

  4. Murray PDF, Huxley JS (1925) Self differentiation in the grafted limb bud of the chick. J Anat 59:379–384

    PubMed  CAS  Google Scholar 

  5. Hattner R, Epker BN, Frost HM (1965) Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 206:489–490

    Article  PubMed  CAS  Google Scholar 

  6. Rauch F, Neu C, Manz F, Schoenau E (2001) The development of metaphyseal cortex—implications for distal radius fractures during growth. J Bone Miner Res 16:1547–1555

    Article  PubMed  CAS  Google Scholar 

  7. Orwoll ES (2003) Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res 18:949–954

    Article  PubMed  Google Scholar 

  8. Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30:5–7

    Article  PubMed  CAS  Google Scholar 

  9. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    Article  PubMed  CAS  Google Scholar 

  10. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301

    Article  PubMed  CAS  Google Scholar 

  11. Parfitt AM (2001) The bone remodeling compartment: a circulatory function for bone lining cells. J Bone Miner Res 16:1583–1585

    Article  PubMed  CAS  Google Scholar 

  12. Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582

    Article  PubMed  CAS  Google Scholar 

  13. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  PubMed  CAS  Google Scholar 

  14. SPRA AF (1941) Postmenopausal osteoporosis. J Am Med Assoc 116:2465–2474

    Google Scholar 

  15. Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17

    Article  PubMed  CAS  Google Scholar 

  16. Vedi S, Compston JE, Webb A, Tighe JR (1982) Histomorphometric analysis of bone biopsies from the iliac crest of normal British subjects. Metab Bone Dis Relat Res 4:231–236

    Article  PubMed  CAS  Google Scholar 

  17. Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD, Stanford WL (2003) Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice. Proc Natl Acad Sci U S A 100:5840–5845

    Article  PubMed  CAS  Google Scholar 

  18. Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE (1999) Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab 17:171–177

    Article  PubMed  CAS  Google Scholar 

  19. Oreffo RO, Bord S, Triffitt JT (1998) Skeletal progenitor cells and ageing human populations. Clin Sci (Lond) 94:549–555

    CAS  Google Scholar 

  20. Eriksen EF (1986) Normal and pathological remodeling of human trabecular bone: three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr Rev 7:379–408

    Article  PubMed  CAS  Google Scholar 

  21. Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M (1999) Hormone replacement therapy prevents osteoclastic hyperactivity: a histomorphometric study in early postmenopausal women. J Bone Miner Res 14:1217–1221

    Article  PubMed  CAS  Google Scholar 

  22. Compston JE, Yamaguchi K, Croucher PI, Garrahan NJ, Lindsay PC, Shaw RW (1995) The effects of gonadotrophin-releasing hormone agonists on iliac crest cancellous bone structure in women with endometriosis. Bone 16:261–267

    Article  PubMed  CAS  Google Scholar 

  23. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    Article  PubMed  CAS  Google Scholar 

  24. Eriksen EF, Mosekilde L, Melsen F (1985) Trabecular bone resorption depth decreases with age: differences between normal males and females. Bone 6:141–146

    Article  PubMed  CAS  Google Scholar 

  25. Cohen-Solal ME, Shih MS, Lundy MW, Parfitt AM (1991) A new method for measuring cancellous bone erosion depth: application to the cellular mechanisms of bone loss in postmenopausal women. J Bone Miner Res 6:1331–1338

    Article  PubMed  CAS  Google Scholar 

  26. Birkenhäger-Frenkel DH, Nigg AL, Hens CJJ, Birkenhäger JC (1993) Changes of interstitial bone thickness with age in men and women. Bone 14:211–216

    Article  PubMed  Google Scholar 

  27. Croucher PI, Mellish RWE, Vedi S, Garrahan NJ, Compston JE (1989) The relationship between resorption depth and mean interstitial bone thickness: age-related changes in man. Calcif Tissue Int 45:15–19

    Article  PubMed  CAS  Google Scholar 

  28. Balena R, Shih MS, Parfitt AM (1992) Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women. J Bone Miner Res 7:1475–1482

    Article  PubMed  CAS  Google Scholar 

  29. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  30. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214

    Article  PubMed  Google Scholar 

  31. Riggs BL, Wahner HW, Melton LJ 3rd, Richelson LS, Judd HL, Offord KP (1986) Rates of bone loss in the appendicular and axial skeletons of women. Evidence of substantial vertebral bone loss before menopause. J Clin Invest 77:1487–1491

    Article  PubMed  CAS  Google Scholar 

  32. Gilsanz V, Gibbens DT, Carlson M, Boechat MI, Cann CE, Schulz EE (1988) Peak trabecular vertebral density: a comparison of adolescent and adult females. Calcif Tissue Int 43:260–262

    Article  PubMed  CAS  Google Scholar 

  33. van der Linden JC, Homminga J, Verhaar JA, Weinans H (2001) Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res 16:457–465

    Article  PubMed  Google Scholar 

  34. Seeman E (2003) Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med 349:320–323

    Article  PubMed  Google Scholar 

  35. Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856–1863

    Article  PubMed  Google Scholar 

  36. Parfitt A (1980) Morphological basis of bone mineral measurements: transient and steady state effects of treatment in osteoporosis. Miner Electrolyte Metab 4:273–287

    Google Scholar 

  37. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18:1012–1019

    Article  PubMed  CAS  Google Scholar 

  38. Parfitt AM (1984) The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif Tissue Int 36(Suppl 1):S37–S45

    Article  PubMed  Google Scholar 

  39. Brown JP, Delmas PD, Arlot M, Meunier PJ (1987) Active bone turnover of the cortico-endosteal envelope in postmenopausal osteoporosis. J Clin Endocrinol Metab 6:954–959

    Article  Google Scholar 

  40. Arlot ME, Delmas PD, Chappard D, Meunier PJ (1990) Trabecular and endocortical bone remodeling in postmenopausal osteoporosis: comparison with normal postmenopausal women. Osteoporos Int 1:41–49

    Article  PubMed  CAS  Google Scholar 

  41. Foldes J, Parfitt AM, Shih MS, Rao DS, Kleerekoper M (1991) Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis. J Bone Miner Res 6:759–766

    PubMed  CAS  Google Scholar 

  42. Martin RB (1984) Porosity and specific surface of bone. Crit Rev Biomed Eng 10:179–222

    PubMed  CAS  Google Scholar 

  43. Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691

    Article  PubMed  CAS  Google Scholar 

  44. Yeni YN, Brown CU, Wang Z, Norman TL (1997) The influence of bone morphology on fracture toughness of the human femur and tibia. Bone 21:453–459

    Article  PubMed  CAS  Google Scholar 

  45. Hernandez CJ, Gupta A, Keaveny TM (2006) A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J Bone Miner Res 21:1248–1255

    Article  PubMed  Google Scholar 

  46. Boivin G, Lips P, Ott SM, Harper KD, Sarkar S, Pinette KV, Meunier PJ (2003) Contribution of raloxifene and calcium and vitamin D3 supplementation to the increase of the degree of mineralization of bone in postmenopausal women. J Clin Endocrinol Metab 88:4199–4205

    Article  PubMed  CAS  Google Scholar 

  47. Boivin G, Meunier PJ (2002) Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43:535–537

    Article  PubMed  CAS  Google Scholar 

  48. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336

    Article  PubMed  CAS  Google Scholar 

  49. Garnero P, Borel O, Gineyts E, Duboeuf F, Solberg H, Bouxsein ML, Christiansen C, Delmas PD (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38:300–309

    Article  PubMed  CAS  Google Scholar 

  50. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde L (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int 65:203–210

    Article  PubMed  CAS  Google Scholar 

  51. Banse X, Sims TJ, Bailey AJ (2002) Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res 17:1621–1628

    Article  PubMed  CAS  Google Scholar 

  52. Nalla RK, Kruzic JJ, Kinney JH, Ritchie RO (2004) Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone 35:1240–1246

    Article  PubMed  CAS  Google Scholar 

  53. Qiu S, Rao DS, Fyhrie DP, Palnitkar S, Parfitt AM (2005) The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37:10–15

    Article  PubMed  Google Scholar 

  54. Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349:327–334

    Article  PubMed  Google Scholar 

  55. Aaron JE, Makins NB, Sagreiya K (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Relat Res 215:260–271

    PubMed  Google Scholar 

  56. Duan Y, Beck TJ, Wang XF, Seeman E (2003) Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. J Bone Miner Res 18(10):1766–1774

    Article  PubMed  Google Scholar 

  57. Duan Y, Turner CH, Kim BT, Seeman E (2001) Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res 16:2267–2275

    Article  PubMed  CAS  Google Scholar 

  58. Duan Y, Wang XF, Evans A, Seeman E (2005) Structural and biomechanical basis of racial and sex differences in vertebral fragility in Chinese and Caucasians. Bone 36:987–998

    Article  PubMed  Google Scholar 

  59. Wang XF, Duan Y, Beck TJ, Seeman E (2005) Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old age. Bone 36:978–986

    Article  PubMed  Google Scholar 

  60. Seeman E, Duan Y, Fong C, Edmonds J (2001) Fracture site-specific deficits in bone size and volumetric density in men with spine or hip fractures. J Bone Miner Res 16:120–127

    Article  PubMed  CAS  Google Scholar 

Download references

Dedication

This paper is dedicated to Pierre Delmas by his student, postdoctoral fellow, then colleague, Dr. Pawel Szulc and by Ego Seeman; our friend and hero for many years, but not long enough.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Seeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szulc, P., Seeman, E. Thinking inside and outside the envelopes of bone. Osteoporos Int 20, 1281–1288 (2009). https://doi.org/10.1007/s00198-009-0994-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-0994-y

Keywords

Navigation