Skip to main content
Erschienen in: Electrical Engineering 4/2018

17.05.2018 | Original Paper

A combined speed estimation scheme for indirect vector-controlled induction motors

verfasst von: S. Yang, X. Li, Z. Xie, X. Zhang

Erschienen in: Electrical Engineering | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper a novel speed estimation scheme, combining sliding mode observer (SMO), model reference adaptive system (MRAS), and feedforward control, is proposed for indirect vector-controlled induction motors. Firstly, an intermediate current variable is defined to simplify the \(\Gamma \)-type representation of induction motor. With the definition, a SMO is designed secondly, where the unknown terms in the current equations are replaced with the sliding mode controls. In sliding mode, the dynamics about the equivalent control components are feasible to be derived by solving the sliding mode equations. Following that another set of state equations about the equivalent control components themselves are derived, aiming to form a MRAS with the rotor speed as the adapting parameter. The references of the state variables in the MRAS are provided by filtering out the high-frequency components in the sliding mode functions in the SMO. Meanwhile, a crude value of the rotor speed, calculated directly from the equivalent control components, are fed forward into the speed adaptation mechanism in the MRAS to improve the dynamic performance of the speed estimation. As shown through simulation and experiments, this proposed combined speed observation scheme exhibits better stable and dynamic performance and satisfactory parameter robustness.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oukaci A, Toufouti R, Dib D, Atarsia L (2017) Comparison performance between sliding mode control and nonlinear control, application to induction motor. Electr Eng 99:33–45CrossRef Oukaci A, Toufouti R, Dib D, Atarsia L (2017) Comparison performance between sliding mode control and nonlinear control, application to induction motor. Electr Eng 99:33–45CrossRef
2.
Zurück zum Zitat Sung W, Shin J, Jeong Y (2012) Energy-efficient and robust control for high-performance induction motor drive with an application in electric vehicles. IEEE Trans Veh Technol 61(8):3394–3405CrossRef Sung W, Shin J, Jeong Y (2012) Energy-efficient and robust control for high-performance induction motor drive with an application in electric vehicles. IEEE Trans Veh Technol 61(8):3394–3405CrossRef
3.
Zurück zum Zitat Nisha GK, Lakaparampil ZV, Ushakumari S (2017) Effect of power factor on torque capability of FOC induction machine in field weakening region for propulsion systems. Electr Eng 99:1065–1072CrossRef Nisha GK, Lakaparampil ZV, Ushakumari S (2017) Effect of power factor on torque capability of FOC induction machine in field weakening region for propulsion systems. Electr Eng 99:1065–1072CrossRef
4.
Zurück zum Zitat Merabet A, Tanvir AA, Beddek K (2017) Torque and state estimation for real-time implementation of multivariable control in sensorless induction motor drives. IET Electr Power Appl 11(4):653–663CrossRef Merabet A, Tanvir AA, Beddek K (2017) Torque and state estimation for real-time implementation of multivariable control in sensorless induction motor drives. IET Electr Power Appl 11(4):653–663CrossRef
5.
Zurück zum Zitat Tabbache B, Rizoug N, Benbouzid MEH, Kheloui A (2013) A control reconfiguration strategy for post-sensor FTC in induction motor-based EVs. IEEE Trans Veh Technol 62(3):965–971CrossRef Tabbache B, Rizoug N, Benbouzid MEH, Kheloui A (2013) A control reconfiguration strategy for post-sensor FTC in induction motor-based EVs. IEEE Trans Veh Technol 62(3):965–971CrossRef
6.
Zurück zum Zitat Kumar R, Das S, Chattopadhyay AK (2016) Comparative assessment of two different model reference adaptive system schemes for speed-sensorless control of induction motor drives. IET Electr Power Appl 10(2):141–154CrossRef Kumar R, Das S, Chattopadhyay AK (2016) Comparative assessment of two different model reference adaptive system schemes for speed-sensorless control of induction motor drives. IET Electr Power Appl 10(2):141–154CrossRef
7.
Zurück zum Zitat Diab AAZ (2017) Implementation of a novel full-order observer for speed sensorless vector control of induction motor drives. Electr Eng 99:907–921CrossRef Diab AAZ (2017) Implementation of a novel full-order observer for speed sensorless vector control of induction motor drives. Electr Eng 99:907–921CrossRef
8.
Zurück zum Zitat Zhang X (2013) Sensorless induction motor drive using indirect vector controller and sliding-mode observer for electric vehicles. IEEE Trans Veh Technol 62(7):3010–3018CrossRef Zhang X (2013) Sensorless induction motor drive using indirect vector controller and sliding-mode observer for electric vehicles. IEEE Trans Veh Technol 62(7):3010–3018CrossRef
9.
Zurück zum Zitat Kumar R, Das S, Syam P, Chattopadhyay AK (2015) Review on model reference adaptive system for sensorless vector control of induction motor drives. IET Electr Power Appl 9(7):496–511CrossRef Kumar R, Das S, Syam P, Chattopadhyay AK (2015) Review on model reference adaptive system for sensorless vector control of induction motor drives. IET Electr Power Appl 9(7):496–511CrossRef
10.
Zurück zum Zitat Zhao L, Huang J, Chen J, Ye M (2015) A parallel speed and rotor time constant identification scheme for indirect field oriented induction motor drives. IEEE Trans Power Electron 31(9):6494–6503CrossRef Zhao L, Huang J, Chen J, Ye M (2015) A parallel speed and rotor time constant identification scheme for indirect field oriented induction motor drives. IEEE Trans Power Electron 31(9):6494–6503CrossRef
11.
Zurück zum Zitat Lascu C, Boldea I, Blaabjerg F (2009) A class of speed-sensorless sliding-mode observers for high-performance induction motor drives. IEEE Trans. Ind. Electron. 56(9):3394–3404CrossRef Lascu C, Boldea I, Blaabjerg F (2009) A class of speed-sensorless sliding-mode observers for high-performance induction motor drives. IEEE Trans. Ind. Electron. 56(9):3394–3404CrossRef
12.
Zurück zum Zitat Sun W, Yu Y, Wang G, Li B, Xu D (2015) Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm. IEEE Trans Power Electron 31(3):2609–2626CrossRef Sun W, Yu Y, Wang G, Li B, Xu D (2015) Design method of adaptive full order observer with or without estimated flux error in speed estimation algorithm. IEEE Trans Power Electron 31(3):2609–2626CrossRef
13.
Zurück zum Zitat Ravi Teja AV, Chakraborty C, Maiti S, Hori Y, Hori Y (2012) A new model reference adaptive controller for four quadrant vector controlled induction motor drives. IEEE Trans. Ind. Electron 59(10):3575–3767CrossRef Ravi Teja AV, Chakraborty C, Maiti S, Hori Y, Hori Y (2012) A new model reference adaptive controller for four quadrant vector controlled induction motor drives. IEEE Trans. Ind. Electron 59(10):3575–3767CrossRef
14.
Zurück zum Zitat Zhao L, Huang J, Chen J, Ye M (2016) A parallel and rotor speed time constant identification scheme for indirect field oriented induction motor drives. IEEE Trans Power Electron 31(9):6494–6503CrossRef Zhao L, Huang J, Chen J, Ye M (2016) A parallel and rotor speed time constant identification scheme for indirect field oriented induction motor drives. IEEE Trans Power Electron 31(9):6494–6503CrossRef
15.
Zurück zum Zitat Ide K, Ha J-I, Sawamura M (2006) A hybrid speed estimator of flux observer for induction motor drives. IEEE Trans. Ind. Electron. 53(1):130–137CrossRef Ide K, Ha J-I, Sawamura M (2006) A hybrid speed estimator of flux observer for induction motor drives. IEEE Trans. Ind. Electron. 53(1):130–137CrossRef
16.
Zurück zum Zitat Basic D, Malrait F, Rouchon P (2011) Current controller for low-frequency signal injection and rotor flux position tracking at low speeds. IEEE Trans. Ind. Electron. 58(9):4010–4022CrossRef Basic D, Malrait F, Rouchon P (2011) Current controller for low-frequency signal injection and rotor flux position tracking at low speeds. IEEE Trans. Ind. Electron. 58(9):4010–4022CrossRef
17.
Zurück zum Zitat Sun W, Gao J, Liu X, Yu Y etc (2016) Inverter nonlinear error compensation using feedback gains and self-tuning estimated current error in adaptive full-order observer. IEEE Trans. Ind. Appl. 52(1):472–482CrossRef Sun W, Gao J, Liu X, Yu Y etc (2016) Inverter nonlinear error compensation using feedback gains and self-tuning estimated current error in adaptive full-order observer. IEEE Trans. Ind. Appl. 52(1):472–482CrossRef
18.
Zurück zum Zitat Wang F, Zhang Z, Wang J, Rodriguez J (2017) Sensorless model-based PCC for induction machine. IET Electr Power Appl 11(5):885–892CrossRef Wang F, Zhang Z, Wang J, Rodriguez J (2017) Sensorless model-based PCC for induction machine. IET Electr Power Appl 11(5):885–892CrossRef
19.
Zurück zum Zitat Usta MA, Qkumus HI, Kahveci H (2017) A simplified three-level SVM-DTC induction motor drive with speed and stator resistance estimation based on extended Kalman filter. Electr Eng 99:707–720CrossRef Usta MA, Qkumus HI, Kahveci H (2017) A simplified three-level SVM-DTC induction motor drive with speed and stator resistance estimation based on extended Kalman filter. Electr Eng 99:707–720CrossRef
20.
Zurück zum Zitat Harnefors L, Hinkkanen M (2008) Completer stability of reduced-order and full-order observers for sensorless IM drives. IEEE Trans. Ind. Electron. 55(3):1319–1329CrossRef Harnefors L, Hinkkanen M (2008) Completer stability of reduced-order and full-order observers for sensorless IM drives. IEEE Trans. Ind. Electron. 55(3):1319–1329CrossRef
21.
Zurück zum Zitat Smith AN, Gadoue SM, Finch JW (2016) Improved rotor flux estimation at low speeds for torque MRAS-based sensorless induction motor drives. IEEE Trans Energy Convers 31(1):270–282CrossRef Smith AN, Gadoue SM, Finch JW (2016) Improved rotor flux estimation at low speeds for torque MRAS-based sensorless induction motor drives. IEEE Trans Energy Convers 31(1):270–282CrossRef
22.
Zurück zum Zitat Benlaloui I, Drid S, Chrifi-Alaoui L, Ouriagli M (2015) Implementation of a new MRAS speed sensorless vector control of induction machine. IEEE Trans Energy Convers 30(2):588–595CrossRef Benlaloui I, Drid S, Chrifi-Alaoui L, Ouriagli M (2015) Implementation of a new MRAS speed sensorless vector control of induction machine. IEEE Trans Energy Convers 30(2):588–595CrossRef
23.
Zurück zum Zitat Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron 40(1):23–36CrossRef Utkin VI (1993) Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron 40(1):23–36CrossRef
24.
Zurück zum Zitat Derdiyok A, Basci A (2016) Speed estimation of an induction machine based on designed Lyapunov candidate functions. Electr Eng 98:67–75CrossRef Derdiyok A, Basci A (2016) Speed estimation of an induction machine based on designed Lyapunov candidate functions. Electr Eng 98:67–75CrossRef
25.
Zurück zum Zitat Vieira RP, Gastaldini CC, Azzolin RZ, Grundling HA (2014) Sensorless sliding-mode rotor speed observer of induction machines based on magnetizing current estimation. IEEE Trans. Ind. Electron. 61(9):4573–4582CrossRef Vieira RP, Gastaldini CC, Azzolin RZ, Grundling HA (2014) Sensorless sliding-mode rotor speed observer of induction machines based on magnetizing current estimation. IEEE Trans. Ind. Electron. 61(9):4573–4582CrossRef
26.
Zurück zum Zitat Lascu C, Boldea I, Blaabjerg F (2006) Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives. IEEE Trans. Ind. Electron. 53(1):57–65CrossRef Lascu C, Boldea I, Blaabjerg F (2006) Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives. IEEE Trans. Ind. Electron. 53(1):57–65CrossRef
27.
Zurück zum Zitat Yang S, Ding D, Li X, Xie Z, Zhang X, Chang L (2017) A novel online parameter estimation method for indirect field oriented induction motor drives. IEEE Trans Energy Convers 32(4):1562–1573CrossRef Yang S, Ding D, Li X, Xie Z, Zhang X, Chang L (2017) A novel online parameter estimation method for indirect field oriented induction motor drives. IEEE Trans Energy Convers 32(4):1562–1573CrossRef
28.
Zurück zum Zitat Fallaha CJ, Saad M, Kanaan HY, Al-Haddad K (2011) Sliding-mode robot control with exponential reaching law. IEEE Trans. Ind. Electron. 58(2):600–610CrossRef Fallaha CJ, Saad M, Kanaan HY, Al-Haddad K (2011) Sliding-mode robot control with exponential reaching law. IEEE Trans. Ind. Electron. 58(2):600–610CrossRef
29.
Zurück zum Zitat Sul SK (1989) A novel technique of rotor resistance estimation considering variation of mutual inductance. IEEE Trans Ind Appl 25(4):578–587CrossRef Sul SK (1989) A novel technique of rotor resistance estimation considering variation of mutual inductance. IEEE Trans Ind Appl 25(4):578–587CrossRef
30.
Zurück zum Zitat Zaky MS, Khater MM, Shokralla SS, Yasin HA (2009) Widespeed-range estimation with online parameter identification schemes of sensorless induction motor drives. IEEE Trans. Ind. Electron. 56(5):1699–1707CrossRef Zaky MS, Khater MM, Shokralla SS, Yasin HA (2009) Widespeed-range estimation with online parameter identification schemes of sensorless induction motor drives. IEEE Trans. Ind. Electron. 56(5):1699–1707CrossRef
31.
Zurück zum Zitat Lei W, Deng X, Hu K, Zhang X, Wang K (2010) A novel parameter identification method for induction motor. In: Proceedings of ICMTMA, Changsha, pp 265–268 Lei W, Deng X, Hu K, Zhang X, Wang K (2010) A novel parameter identification method for induction motor. In: Proceedings of ICMTMA, Changsha, pp 265–268
32.
Zurück zum Zitat Sonnaillon MO, Bisheimer G, Angelo CD, Garcia GO (2010) Online sensorless induction motor termperature monitoring. IEEE Trans Energy Convers 25(2):273–280CrossRef Sonnaillon MO, Bisheimer G, Angelo CD, Garcia GO (2010) Online sensorless induction motor termperature monitoring. IEEE Trans Energy Convers 25(2):273–280CrossRef
33.
Zurück zum Zitat Dittrich A (1994) Parameter sensitivity of procedures for on-line adaptation of the rotor time constant of induction machines with field oriented control. IEE Proc. Elect. Power Appl 141(6):353–359CrossRef Dittrich A (1994) Parameter sensitivity of procedures for on-line adaptation of the rotor time constant of induction machines with field oriented control. IEE Proc. Elect. Power Appl 141(6):353–359CrossRef
Metadaten
Titel
A combined speed estimation scheme for indirect vector-controlled induction motors
verfasst von
S. Yang
X. Li
Z. Xie
X. Zhang
Publikationsdatum
17.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Electrical Engineering / Ausgabe 4/2018
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-018-0699-3

Weitere Artikel der Ausgabe 4/2018

Electrical Engineering 4/2018 Zur Ausgabe

Neuer Inhalt