Skip to main content
Log in

Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

With exception of South Africa, very little is known about the presence and abundance of toxic cyanobacteria and cyanobacterial blooms on the African continent. The close proximity between society and nature, and the use of the sparse water resources as drinking water in large parts of Africa, lead to the recognition that more knowledge on toxic cyanobacterial blooms is of major importance. The bloom forming cyanobacterium Microcystis aeruginosa is known to produce cyclic heptatoxins (microcystins) which can be toxic to humans. In this study the morphological, genetic, and chemical characters of 24 strains of M. aeruginosa from several water bodies in Kenya and Uganda, some of them used as drinking water sources, were examined. The M. aeruginosa strains possessed different levels of diversity depending on characterisation method. Four morphotypes were identified based on the traditional morphological approach, 10 genotypes by DNA sequence comparison of the PC-IGS and ITS1 rDNA regions, and 10 chemotypes based on MALDI-TOF-MS oligopeptide analysis. Only 4 of the 24 isolated strains from East Africa were found to produce microcystins, while oligopeptides belonging to the aeruginosin and cyanopeptolin class were detected in most strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Banker R, Carmeli S (1999) Inhibitors of Serine Proteases from a Waterbloom of the Cyanobacterium Microcystis sp. Tetrahedon 55:10835–10844

    Article  CAS  Google Scholar 

  • Bell SG, Codd GA (1994) Cyanobacterial toxins and human health. Rev Med Microbiol 5:256–264

    Google Scholar 

  • Bittencourt-Oliveira MC, Oliveira M, Bolch CJS (2001) Genetic variability of brazilian strains of the Microcystis aeruginosa complex (Cyanobacteria/Cyanophyceae) using the phycocyanin intergenic spacer and flanking regions (cpcBA). J Phycol 37:810–818

    Article  CAS  Google Scholar 

  • Bolch CJ, Blackburn SI, Jones GJ, Orr PT, Grewe PM (1997) Plasmid content and distribution in Australian isolates of Microcystis Kützing ex Lemmermann (Cyanobacteria: Chroococcales). Phycologia 36:6–11

    Article  Google Scholar 

  • Bootsma HA, Hecky RE (2003) A comparative introduction to the biology and limnology of the African Great Lakes. J Great Lakes Res 29:3–18

    Article  CAS  Google Scholar 

  • Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069

    PubMed  CAS  Google Scholar 

  • Carmichael WW, Beasley V, Bunner DL, Eloff JN, Falconer I, Gorham P, Harada KI, Krishnamurthy T, Yu MJ, Moore RE, Rinehart K, Runnegar M, Skulberg OM, Watanabe M (1988) Naming of cyclic heptapeptide toxins of cyanobacteria (Blue–Green-Algae). Toxicon 26:971–973

    Article  PubMed  CAS  Google Scholar 

  • Charmichael WW (1996) Toxic Microcystis and the environment. In: Watanabe MF, Harada K, Charmichael WW, Fujiki H (eds) Toxic Microcystis spp. CRC Press, Boca Raton, pp 13–34

    Google Scholar 

  • Christoffersen K (1996) Effect of microcystin on growth of single species and on mixed natural populations of heterotrophic nanoflagellates. Nat Toxins 4:215–220

    Article  PubMed  CAS  Google Scholar 

  • Codd GA, Bell SG, Kaya K, Ward CJ, Beattie KA, Meatcalf JS (1999) Cyanobacterial toxins, exposure routes and human health. Eur J Phychol 34:405–415

    Article  Google Scholar 

  • Codd GA, Azevedo SMFO, Bagchi SN, Burch MD, Carmichael, WW, Harding WR, Kaya K, Utkilen HC (2005) CYANONET: a global network for Cyanobacterial Bloom and Toxin Risk Management. Initial situation assessment and recommendations. IHP-VI Technical Document in Hydrology N°76. UNESCO Working Series SC-2005/WS/55

  • Dor I, Hornoff M (1985) Studies on Aphanothece halophytica fremy from a solar pond: comparison of two isolates on the basis of cell polymorphism and growth response to salinity, temperature and light conditions. Bot Mar 28:389–398

    Article  Google Scholar 

  • Fastner J, Erhard M, von Döhren H (2001) Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization time of flight mass spectrometry. Appl Environ Microbiol 67:5069–5076

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Humpage AR, Falconer IR (1999) Microcystin-LR and liver tumor promotion: effects on cytokinesis, ploidy, and apoptosis in cultured hepatocytes. Environ Toxicol 14:61–75

    Article  CAS  Google Scholar 

  • Iteman I, Rippka R, de Marsac NT, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286

    PubMed  CAS  Google Scholar 

  • Janse I, Kardinaal WEA, Meima M, Fastner J, Visser PM, Zwart G (2004) Toxic and non-toxic Microcystis colonies can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70:3979–3987

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Watanabe MF, Watanabe M (1991) Allozyme divergence in Microcystis (Cyanophyceae) and its taxonomic inference. Algol Stud 64:129–140

    Google Scholar 

  • Komárek J (1985) Do all cyanophytes have a cosmopolitan distribution? Survey of the freshwater cyanophyte flora of Cuba. Algol Stud 38/39:359–386

    Google Scholar 

  • Komárek J (1991) A review of water-bloom forming Microcystis species, with regard to populations from Japan. Algol Stud 64:115–127

    Google Scholar 

  • Komárek J, Anagnostidis K (1999) Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Cyanoprokaryota 1. Süwasserflora von Mitteleuropa. Gustav Fischer, Jena, Germany

    Google Scholar 

  • Kotai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae. Publication B-11/69. Norwegian Institute for Water Research, Oslo

    Google Scholar 

  • Krüger GHJ, Elhoff JN, Pretorius JA (1981) Morphological changes in toxic and non-toxic Microcystis isolates at different irradiance levels. J Phycol 17:52–56

    Article  Google Scholar 

  • Krienitz L, Ballot A, Kotut K, Wiegand C, Putz S, Metcalf JS, Codd GA, Pflugmacher S (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 2:141–148

    Google Scholar 

  • Kuiper-Goodman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN Spon, London, pp 113–153

    Google Scholar 

  • Namikoshi M, Rinehart KL (1996) Bioactive compounds produced by cyanobacteria. J Ind Microbiol Biotechnol 17:373–384

    Article  CAS  Google Scholar 

  • Neilan BA, Jacobs D, Goodman AE (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl Environ Microbiol 61:3875–3883

    PubMed  CAS  Google Scholar 

  • Nishihara H, Miwa H, Watanabe M, Nagashima M, Yagi O, Takamura Y (1997) Random amplified polymorphic DNA (RAPD) analyses for discriminating genotypes of Microcystis cyanobacteria. Biosci Biotechnol Biochem 61:1067–1072

    PubMed  CAS  Google Scholar 

  • Nylander JAA (2002) MrModeltest v1.0b. Program distributed by the author. Department of Systematic Zoology, Uppsala University

  • Ohtake A, Shirai M, Adia T, Mori N, Harada K, Matsuura K, Suzuki M, Nakano M (1989) Toxicity of Microcystis species isolated from natural blooms and purification of the toxin. Appl Environ Microbiol 55:3202–3207

    PubMed  CAS  Google Scholar 

  • Olsen GJ, Woese CR (1993) Ribosomal-Rna—a key to phylogeny. Faseb J 1:113–123

    Google Scholar 

  • Otsuka S, Suda S, Li R, Watanabe M, Oyaizu H, Matsumoto S, Watanabe MM (1999) Phylogenetic relationship between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21

    Article  PubMed  CAS  Google Scholar 

  • Otsuka S, Suda S, Li R, Matsumoto S, Watanabe MM (2000) Morphological variability of colonies of Microcystis morphospecies in culture. J Gen Appl Microbiol 46:39–50

    Article  PubMed  CAS  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Saker ML, Fastner J, Dittmann E, Christiansen G, Vasconcelos VM (2005) Variation between strains of the cyanobacterium Microcystis aeruginosa isolated from a Portuguese river. J Appl Microbiol 4:749–757

    Article  CAS  Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York, vol 1–3

  • Sanchis D, Padilla C, Del Campo FF, Quesada A, Sanz-Alferez S (2005) Phylogenetic and morphological analyses of Microcystis strains (Cyanophyta/Cyanobacteria) from a Spanish water reservoir. Nova Hedwigia 81:431–448

    Article  Google Scholar 

  • Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods) version 4.0. Sinauer Associates, Sunderland

    Google Scholar 

  • Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (Phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 76:2810–2818

    Article  Google Scholar 

  • Via-Ordorika L, Fastner J, Kurmayer R, Hisbergues M, Dittmann E, Komárek J, Erhard M Chorus I (2004) Distribution of microcystin-producing and non-microcystin-producing Microcystis sp. in European freshwater bodies. Detection of microcystins and microcystin genes in individual colonies. Syst Appl Microbiol 27:592–602

    Article  PubMed  CAS  Google Scholar 

  • Welker M, Fastner J, Erhard M, von Döhren H (2002) Application of MALDI-TOF MS in cyanotoxin research. Environ Toxicol 17:367–374

    Article  PubMed  CAS  Google Scholar 

  • Welker M, Brunke M, Preussel K, Lippert I, von Döhren H (2004) Diversity and distribution of Microcystis (Cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology 150:1785–1796

    Article  PubMed  CAS  Google Scholar 

  • Welker M, von Döhren H (2006) Cyanobacterial peptides—nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563

    Article  PubMed  CAS  Google Scholar 

  • Wiegand C, Peuthert A, Pflugmacher S, Carmeli S (2002) Effects of microcin SF608 and microcystin-LR, two cyanotobacterial compounds produced by Microcystis sp., on aquatic organisms. Environ Toxicol 17:400–406

    Article  PubMed  CAS  Google Scholar 

  • WHO (1998) Guidelines for drinking-water quality, 2nd edn. Addendum to volume 2: health criteria and other supporting information. World Health Organization, Geneva

  • Wilson AE, Sarnelle O, Neilan BA, Salmon TP, Gehringer MM, Hay ME (2005) Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 71:6126–6133

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Yoshida T, Takashima Y, Kondo R, Hiroishi S (2005) Genetic diversity of the toxic cyanobacterium Microcystis in Lake Mikata. Environ Toxicol 20:229–234

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Randi Skulberg, Hege Hansen, and Monika Degebrodt for excellent laboratory assistance and Kjetil Røberg for helpful assistance with phylogenetic analysis. We are grateful to Marcel Erhard (AnagnosTec, Luckenwalde) and Martin Welker (Technical University, Berlin) for use of databases and for providing reference PSD spectra. We would like to thank the Kenyan Ministry of Education Science and Technology for providing research permission (No. MOEST 13/001/31 C90) and the Uganda National Council for Science and Technology for providing research permit (No. UNCST-EC584). This study was funded by the Norwegian Research Council (No. 148839/730). We thank the two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Haande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haande, S., Ballot, A., Rohrlack, T. et al. Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies. Arch Microbiol 188, 15–25 (2007). https://doi.org/10.1007/s00203-007-0219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0219-8

Keywords

Navigation