Skip to main content
Log in

Quorum sensing inhibitors: can endophytes be prospective sources?

  • Commentary
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Endophytes are microbes which reside inside the plant tissues asymptomatically or causing pathogenicity to the host plant for a brief period. Owing to their presence in a specialized niche, endophytes are capable of synthesizing diverse types of bioactive molecules. Continuous development of resistance mechanism by pathogens to the currently available health treatments and pharmaceuticals has led researchers to explore new therapeutic agents. Quorum sensing has a role in the development of microbial pathogenic traits including biofilm formation. Utilization of quorum sensing (QS) inhibitors in antivirulence approach against pathogenesis is one of the innovative strategies. Endophytic microbes provide a plethora of such required bioactive molecules. This review summarizes the bioprospecting of endophytic microbes for production of novel QS inhibitors. At the outset, an overview is presented about the QS and QS inhibition followed by a summary on the endophytes as a treasure trove of bioactive metabolites, particularly the QS inhibitors. Next, we have outlined screening, purification, production, and application of QS inhibitors starting from the isolation of endophytic microbes. There is huge prospect for endophytes in the domain of human healthcare and food industry, provided that we develop a comprehensive understanding of the biology of endophyte and its ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alfaro JF, Zhang T, Wynn DP, Karschner EL, Zhou ZS (2004) Synthesis of LuxS inhibitors targeting bacterial cell–cell communication. Org Lett 6:3043–3046. doi:10.1021/ol049182i

    Article  CAS  PubMed  Google Scholar 

  • Amara N, Mashiach R, Amar D, Krief P, Spieser SA, Bottomley MJ, Aharoni A, Meijler MM (2009) Covalent inhibition of bacterial quorum sensing. J Am Chem Soc 131:10610–10619. doi:10.1021/ja903292v

    Article  CAS  PubMed  Google Scholar 

  • Anbazhagan D, Mansor M, Yan GO, Md Yusof MY, Hassan H, Sekaran SD (2012) Detection of quorum sensing signal molecules and identification of an autoinducer synthase gene among biofilm forming clinical isolates of Acinetobacter spp. PLoS One 7:e36696. doi:10.1371/journal.pone.0036696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai AJ, Rai VR (2011) Bacterial quorum sensing and food industry. Compr Rev Food Sci Food Saf 10:183–193. doi:10.1111/j.1541-4337.2011.00150.x

    Article  Google Scholar 

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL, Greenberg EP, Stevens AM (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol 179:4043–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bijtenhoorn P, Schipper C, Hornung C, Quitschau M, Grond S, Weiland N, Streit WR (2011) BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J Biotechnol 155:86–94. doi:10.1016/j.jbiotec.2010.12.016

    Article  CAS  PubMed  Google Scholar 

  • Brackman G, Hillaert U, Van Calenbergh S, Nelis HJ, Coenye T (2009) Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Res Microbiol 160:144–151. doi:10.1016/j.resmic.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  • Brackman G, Cos P, Maes L, Nelis HJ, Coenye T (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661. doi:10.1128/aac.00045-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucar F, Wube A, Schmid M (2013) Natural product isolation—how to get from biological material to pure compounds. Nat Prod Rep 30:525–545. doi:10.1039/c3np20106f

    Article  CAS  PubMed  Google Scholar 

  • Buzby JC, Wells HF, Aulakh J (2014) Food loss—questions about the amount and causes still remain

  • Calfee MW, Coleman JP, Pesci EC (2001) Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 98:11633–11637. doi:10.1073/pnas.201328498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan K, Atkinson S, Mathee K, Sam C, Chhabra SR, Cámara M, Koh C, Williams P (2011) Characterization of N-acylhomoserine lactone-degrading bacteria associated with the Zingiber officinale (ginger) rhizosphere: co-existence of quorum quenching and quorum sensing in Acinetobacter and Burkholderia. BMC Microbiol 11:51. doi:10.1186/1471-2180-11-51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YW, Hodgkiss IJ, Hyde KD (2005) Enzyme production by endophytes of Brucea javanica. J Agric Tech 1:55–66

    Google Scholar 

  • Choi J, Shin D, Kim M, Park J, Lim S, Ryu S (2012) LsrR-mediated quorum sensing controls invasiveness of Salmonella typhimurium by regulating SPI-1 and flagella genes. PLoS One 7:e37059. doi:10.1371/journal.pone.0037059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279. doi:10.1007/s00253-010-2521-7

    Article  CAS  PubMed  Google Scholar 

  • Chowdhary K, Kaushik N, Coloma AG, Raimundo CM (2012) Endophytic fungi and their metabolites isolated from Indian medicinal plant. Phytochem Rev 11:467–485. doi:10.1007/s11101-012-9264-2

    Article  CAS  Google Scholar 

  • Christensen LD, van Gennip M, Jakobsen TH, Alhede M, Hougen HP, Hoiby N, Bjarnsholt T, Givskov M (2012) Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model. J Antimicrob Chemother 67:1198–1206. doi:10.1093/jac/dks002

    Article  CAS  PubMed  Google Scholar 

  • Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V (2006) The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA 103:10420–10425. doi:10.1073/pnas.0604343103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Davies J (2011) How to discover new antibiotics: harvesting the parvome. Curr Opin Chem Biol 15:5–10. doi:10.1016/j.cbpa.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  • de Bary A (1866) Morphologie und Physiologie der Pilze, Flechten, und Myxomyceten. In: Engelmann W (ed) Hofmeister’s handbook of physiological botany, vol 2. Leipzig

  • Deng Y, Wu J, Tao F, Zhang LH (2011) Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev 111:160–173. doi:10.1021/cr100354f

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Yin B, Qian L, Zeng Z, Yang Z, Li H, Lu Y, Zhou S (2011) Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J Med Microbiol 60:1827–1834. doi:10.1099/jmm.0.024166-0

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817. doi:10.1038/35081101

    Article  CAS  PubMed  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392. doi:10.1086/322972

    Article  CAS  PubMed  Google Scholar 

  • Duan F, March JC (2008) Interrupting Vibrio cholerae infection of human epithelial cells with engineered commensal bacterial signaling. Biotechnol Bioeng 101:128–134. doi:10.1002/bit.21897

    Article  CAS  PubMed  Google Scholar 

  • Duan F, March JC (2010) Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc Natl Acad Sci USA 107:11260–11264. doi:10.1073/pnas.1001294107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa M, Jarmusch AK, Raja HA, El-Elimat T, Kavanaugh JS, Horswill AR, Cooks RG, Cech NB, Oberlies NH (2014) Polyhydroxyanthraquinones as quorum sensing inhibitors from the guttates of Penicillium restrictum and their analysis by desorption electrospray ionization mass spectrometry. J Nat Prod 77:1351–1358. doi:10.1021/np5000704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman EM (1904) The seed-fungus of Lolium temulentum, L., the Darnel. Philos Trans R Soc Lond B 196:1–27. doi:10.1098/rstb.1904.0001

    Article  Google Scholar 

  • Ghosh R, Tiwary BK, Kumar A, Chakraborty R (2014) Guava leaf extract inhibits quorum-sensing and Chromobacterium violaceum induced lysis of human hepatoma cells: whole transcriptome analysis reveals differential gene expression. PLoS One 9:e107703. doi:10.1371/journal.pone.0107703

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerin P (1898) Sur la presence d’un champignon dans l’ivraie. J Bot 12:230–238

    Google Scholar 

  • Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Hoiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102. doi:10.1099/00221287-148-1-87

    Article  CAS  PubMed  Google Scholar 

  • Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181:5489–5497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson AO, Ahmad NH, Van Buren R, Savka MA (2010) Sugarcane and grapevine endophytic bacteria: isolation, detection of quorum sensing signals and identification by 16S v3 rDNA sequence analysis vol 2. Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex Research Center, Badajoz

    Google Scholar 

  • Ishida T, Ikeda T, Takiguchi N, Kuroda A, Ohtake H, Kato J (2007) Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides. Appl Environ Microbiol 73:3183–3188. doi:10.1128/aem.02233-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii S, Fukui K, Yokoshima S, Kumagai K, Beniyama Y, Kodama T, Fukuyama T, Okabe T, Nagano T, Kojima H, Yano T (2017) High-throughput screening of small molecule inhibitors of the Streptococcus quorum-sensing signal pathway. Sci Rep 7:4029. doi:10.1038/s41598-017-03567-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Jude BA, Martinez RM, Skorupski K, Taylor RK (2009) Levels of the secreted Vibrio cholerae attachment factor GbpA are modulated by quorum-sensing-induced proteolysis. J Bacteriol 191:6911–6917. doi:10.1128/jb.00747-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita E, Sawaki M, Oku D, Hamuro A, Mikasa K, Konishi M, Emoto M, Takeuchi S, Narita N, Kashiba S (1991) Suppression of virulence factors of Pseudomonas aeruginosa by erythromycin. J Antimicrob Chemother 27:273–284

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904

    Article  CAS  PubMed  Google Scholar 

  • Koh C, Sam C, Yin W, Tan L, Krishnan T, Chong Y, Chan K (2013) Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 13:6217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657. doi:10.1111/j.1469-8137.2007.02008.x

    Article  PubMed  Google Scholar 

  • Kulanthaivel P, Kreuzman AJ, Strege MA, Belvo MD, Smitka TA, Clemens M, Swartling JR, Minton KL, Zheng F, Angleton EL, Mullen D, Jungheim LN, Klimkowski VJ, Nicas TI, Thompson RC, Peng S (2004) Novel lipoglycopeptides as inhibitors of bacterial signal peptidase I. J Biol Chem 279:36250–36258

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sahai V, Bisaria VS (2011) High-density spore production of Piriformospora indica, a plant growth-promoting endophyte, by optimization of nutritional and cultural parameters. Bioresour Technol 102:3169–3175. doi:10.1016/j.biortech.2010.10.116

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. InTech, pp 241–266. doi:10.5772/31596

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294. doi:10.1007/s11274-011-0876-2

    Article  CAS  PubMed  Google Scholar 

  • Kusari P, Kusari S, Lamshoft M, Sezgin S, Spiteller M, Kayser O (2014a) Quorum quenching is an antivirulence strategy employed by endophytic bacteria. Appl Microbiol Biotechnol 98:7173–7183. doi:10.1007/s00253-014-5807-3

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Singh S, Jayabaskaran C (2014b) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303. doi:10.1016/j.tibtech.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  • LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111. doi:10.1128/mmbr.00046-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JE, Singh V, Evans GB, Tyler PC, Furneaux RH, Cornell KA, Riscoe MK, Schramm VL, Howell PL (2005) Structural rationale for the affinity of pico- and femtomolar transition state analogues of Escherichia coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase. J Biol Chem 280:18274–18282. doi:10.1074/jbc.M414471200

    Article  CAS  PubMed  Google Scholar 

  • Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860

    Article  PubMed  Google Scholar 

  • Lopes RB, Costa LE, Vanetti MC, de Araujo EF, de Queiroz MV (2015) Endophytic bacteria isolated from common bean (Phaseolus vulgaris) exhibiting high variability showed antimicrobial activity and quorum sensing inhibition. Curr Microbiol 71:509–516. doi:10.1007/s00284-015-0879-6

    Article  CAS  PubMed  Google Scholar 

  • Lyon GJ, Mayville P, Muir TW, Novick RP (2000) Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc Natl Acad Sci USA 97:13330–13335. doi:10.1073/pnas.97.24.13330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin SD, Xu Y, Meijler MM, Janda KD (2007) Antibody catalyzed hydrolysis of a quorum sensing signal found in Gram-negative bacteria. Bioorg Med Chem Lett 17:1549–1552. doi:10.1016/j.bmcl.2006.12.118

    Article  Google Scholar 

  • Martin-Rodriguez AJ, Reyes F, Martin J, Perez-Yepez J, Leon-Barrios M, Couttolenc A, Espinoza C, Trigos A, Martin VS, Norte M, Fernandez JJ (2014) Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Mar Drugs 12:5503–5526. doi:10.3390/md12115503

    Article  PubMed  PubMed Central  Google Scholar 

  • Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. Phytopathology 98:380–386. doi:10.1094/PHYTO-98-4-0380

    Article  CAS  PubMed  Google Scholar 

  • Nakayama J, Uemura Y, Nishiguchi K, Yoshimura N, Igarashi Y, Sonomoto K (2009) Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria. Antimicrob Agents Chemother 53:580–586. doi:10.1128/aac.00995-08

    Article  CAS  PubMed  Google Scholar 

  • Nicolau DP, Banevicius MA, Nightingale CH, Quintiliani R (1999) Beneficial effect of adjunctive azithromycin in treatment of mucoid Pseudomonas aeruginosa pneumonia in the murine model. Antimicrob Agents Chemother 43:3033–3035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nithya V, Murthy PS, Halami PM (2013) Development and application of active films for food packaging using antibacterial peptide of Bacillus licheniformis Me1. J Appl Microbiol 115:475–483. doi:10.1111/jam.12258

    Article  CAS  PubMed  Google Scholar 

  • Nychas G-JE, Marshall DL, Sofos JN (2007) Meat, poultry, and seafood. In: Food microbiology: fundamentals and frontiers, 3rd edn. American Society of Microbiology. doi:10.1128/9781555815912.ch6

    Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79. doi:10.1146/annurev.micro.54.1.49

    Article  PubMed  Google Scholar 

  • Park J (2007) Infection control by antibody disruption of bacterial quorum sensing signaling. Chem Biol 14:1119–1127. doi:10.1016/j.chembiol.2007.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira CS, Thompson JA, Xavier KB (2013) AI-2-mediated signalling in bacteria. FEMS Microbiol Rev 37:156–181. doi:10.1111/j.1574-6976.2012.00345.x

    Article  CAS  PubMed  Google Scholar 

  • Radic N, Strukelj B (2012) Endophytic fungi: the treasure chest of antibacterial substances. Phytomedicine 19:1270–1284. doi:10.1016/j.phymed.2012.09.007

    Article  PubMed  Google Scholar 

  • Rai N, Rai R, Venkatesh KV (2015) Quorum sensing biosensors. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, India, pp 173–183

    Google Scholar 

  • Rajesh PS, Ravishankar Rai V (2013) Hydrolytic enzymes and quorum sensing inhibitors from endophytic fungi of Ventilago madraspatana Gaertn. Biocatal Agric Biotechnol 2:120–124. doi:10.1016/j.bcab.2013.01.002

    Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814. doi:10.1128/jb.187.5.1799-1814.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Zuo R, Gonzalez Barrios AF, Bedzyk LA, Eldridge GR, Pasmore ME, Wood TK (2005) Differential gene expression for investigation of Escherichia coli biofilm inhibition by plant extract ursolic acid. Appl Environ Microbiol 71:4022–4034. doi:10.1128/aem.71.7.4022-4034.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy V, Fernandes R, Tsao CY, Bentley WE (2010) Cross species quorum quenching using a native AI-2 processing enzyme. ACS Chem Biol 5:223–232. doi:10.1021/cb9002738

    Article  CAS  PubMed  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a012427

    PubMed  PubMed Central  Google Scholar 

  • Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci USA 93:9505–9509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476

    Article  CAS  PubMed  Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760. doi:10.1039/b821578b

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. doi:10.1017/S095375620500273X

    Article  PubMed  Google Scholar 

  • Sifri CD (2008) Quorum sensing: bacteria talk sense. Clin Infect Dis 47:1070–1076. doi:10.1086/592072

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Evans GB, Lenz DH, Mason JM, Clinch K, Mee S, Painter GF, Tyler PC, Furneaux RH, Lee JE, Howell PL, Schramm VL (2005) Femtomolar transition state analogue inhibitors of 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli. J Biol Chem 280:18265–18273. doi:10.1074/jbc.M414472200

    Article  CAS  PubMed  Google Scholar 

  • Skandamis PN, Nychas GJ (2012) Quorum sensing in the context of food microbiology. Appl Environ Microbiol 78:5473–5482. doi:10.1128/aem.00468-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JL, Fratamico PM, Novak JS (2004) Quorum sensing: a primer for food microbiologists. J Food Prot 67:1053–1070

    Article  CAS  PubMed  Google Scholar 

  • Sofer D, Gilboa-Garber N, Belz A, Garber NC (1999) ‘Subinhibitory’ erythromycin represses production of Pseudomonas aeruginosa lectins, autoinducer and virulence factors. Chemotherapy 45:335–341. doi:10.1159/000007224

    Article  CAS  PubMed  Google Scholar 

  • Soulere L, Sabbah M, Fontaine F, Queneau Y, Doutheau A (2010) LuxR-dependent quorum sensing: computer aided discovery of new inhibitors structurally unrelated to N-acylhomoserine lactones. Bioorg Med Chem Lett 20:4355–4358. doi:10.1016/j.bmcl.2010.06.081

    Article  CAS  PubMed  Google Scholar 

  • Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB (2003) Bacteria–host communication: the language of hormones. Proc Natl Acad Sci USA 100:8951–8956. doi:10.1073/pnas.1537100100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staniek A, Woerdenbag HJ, Kayser O (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J Plant Interact 3:75–93. doi:10.1080/17429140801886293

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. doi:10.1128/MMBR.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19. doi:10.1016/j.fbr.2009.07.001

    Article  Google Scholar 

  • Taga ME, Semmelhack JL, Bassler BL (2001) The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol 42:777–793

    Article  CAS  PubMed  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC (2009) Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 75:567–572. doi:10.1128/aem.00632-08

    Article  CAS  PubMed  Google Scholar 

  • Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. grand naine and the affinity of endophytes to the host. Microb Ecol 58:952–964

    Article  CAS  PubMed  Google Scholar 

  • Tiwari R, Karthik K, Rana R, Malik YS, Dhama K, Joshi SK (2016) Quorum sensing inhibitors/antagonists countering food spoilage bacteria-need molecular and pharmaceutical intervention for protecting current issues of food safety. Int J Pharmacol 12:262–271. doi:10.3923/ijp.2016.262.271

    Article  Google Scholar 

  • Villa F, Cappitelli F (2013) Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochem Rev 12:245–254. doi:10.1007/s11101-013-9286-4

    Article  CAS  Google Scholar 

  • Villa F, Pitts B, Stewart PS, Giussani B, Roncoroni S, Albanese D, Giordano C, Tunesi M, Cappitelli F (2011) Efficacy of zosteric acid sodium salt on the yeast biofilm model Candida albicans. Microb Ecol 62:584–598. doi:10.1007/s00248-011-9876-x

    Article  CAS  PubMed  Google Scholar 

  • Wang FW (2012) Bioactive metabolites from Guignardia sp., an endophytic fungus residing in Undaria pinnatifida. Chin J Nat Med 10:72–76. doi:10.1016/s1875-5364(12)60016-8

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Wu JH, Huang WY, Tan RX (2006) Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon. Bioresour Technol 97:786–789. doi:10.1016/j.biortech.2005.03.025

    Article  CAS  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. doi:10.1146/annurev.cellbio.21.012704.131001

    Article  CAS  PubMed  Google Scholar 

  • Wright JS, Jin R, Novick RP (2005) Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc Natl Acad Sci USA 102:1691–1696. doi:10.1073/pnas.0407661102

  • Xavier KB, Bassler BL (2003) LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Tao W, Cheng L, Guo L (2006) Strain improvement and optimization of the media of taxol-producing fungus Fusarium maire. Biochem Eng J 31:67–73. doi:10.1016/j.bej.2006.05.024

    Article  CAS  Google Scholar 

  • Yin XT, Xu LN, Xu L, Fan SS, Liu ZY, Zhang XY (2011) Evaluation of the efficacy of endophytic Bacillus amyloliquefaciens against Botryosphaeria dothidea and other phytopathogenic microorganisms. Afr J Microbiol Res 5:340–345. doi:10.5897/AJMR10.679

    Google Scholar 

  • Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, Sun P, Qin L (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–449. doi:10.1016/j.micres.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Chai Y, Zhong Z, Li S, Winans SC (2003) Agrobacterium bioassay strain for ultrasensitive detection of N-acylhomoserine lactone-type quorum-sensing molecules: detection of autoinducers in Mesorhizobium huakuii. Appl Environ Microbiol 69:6949–6953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank MHRD, Govt. of India for providing fellowship to SS and AM. Grant supports from SGIRG-SRIC (IIT/SRIC/BT/GRT/2014) and Food Security Project (F. No. 4-25/2013-TS-1) of IIT Kharagpur for developing research infrastructure are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal K. Maiti.

Additional information

Communicated by Yusuf Akhter.

Abhirup Mookherjee and Shivangi Singh are equal contributors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mookherjee, A., Singh, S. & Maiti, M.K. Quorum sensing inhibitors: can endophytes be prospective sources?. Arch Microbiol 200, 355–369 (2018). https://doi.org/10.1007/s00203-017-1437-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1437-3

Keywords

Navigation