Skip to main content
Log in

Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Engineered amorphous silica nanoparticles (SiO2-NPs) are widely used in dyes, varnishes, plastics and glue, as well as in pharmaceuticals, cosmetics and food. Novel composite SiO2-NPs are promising multifunctional devices and combine labels for subsequent tracking and are functionalized e.g. to specifically target cells to deliver their cargo. However, biological and potential toxic effects of SiO2-NPs are insufficiently understood. The aim of this study was to determine the uptake and fate of SiO2-NPs in mammalian cells. Also, silica submicron particles (SiO2-SMPs) were included in the studies in order to identify effects, which are only observed for nano-sized SiO2 particles. Fluorescently labelled SiO2-NPs (nominal size 70 nm) and SiO2-SMPs (nominal size 200 and 500 nm) were used to examine cytotoxicity, cellular uptake and localization in human cervical carcinoma cells (HeLa). Particle uptake and intracellular localization in mitochondria, endosomes, lysosomes and nuclei were studied by wide field and confocal laser scanning fluorescence microscopy. Physicochemical characterization of SiO2-NPs by transmission electron microscopy and dynamic light scattering revealed a spherical morphology and a monodisperse size distribution. In the presence of serum, all SiO2 particles are non-toxic. However, in the absence of serum SiO2-NPs but not SiO2-SMPs are highly toxic. SiO2 particles, irrespective of size, were detected in the cytosol and accumulated in endosomal compartments of HeLa cells. No accumulation of SiO2 particles in nuclei or mitochondria of HeLa cells could be observed. In contrast to SiO2-SMPs, SiO2-NPs are preferentially localized in lysosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Becker C, Hodenius M, Blendinger G, Sechi A, Hieronymus T, Müller-Schulte D, Schmitz-Rode T, Zenke M (2007) Uptake of magnetic nanoparticles into cells for cell tracking. J Magn Magn Mater 311(1):234–237

    Article  CAS  Google Scholar 

  • Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27(50):6434–6451. doi:10.1038/onc.2008.310

    Article  PubMed  CAS  Google Scholar 

  • Chang J-S, Chang KLB, Hwang D-F, Kong Z-L (2007) In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41(6):2064–2068

    Article  PubMed  CAS  Google Scholar 

  • Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1):51–62

    Article  PubMed  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668. doi:10.1021/nl052396o

    Article  PubMed  CAS  Google Scholar 

  • Chithrani DB, Dunne M, Stewart J, Allen C, Jaffray DA (2010) Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier. Nanomedicine 6(1):161–169. doi:10.1016/j.nano.2009.04.009

    PubMed  CAS  Google Scholar 

  • Cho W-S, Choi M, Han BS, Cho M, Oh J, Park K, Kim SJ, Kim SH, Jeong J (2007) Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett 175(1–3):24–33. doi:10.1016/j.toxlet.2007.09.008

    Article  PubMed  CAS  Google Scholar 

  • Cho M, Cho W-S, Choi M, Kim SJ, Han BS, Kim SH, Kim HO, Sheen YY, Jeong J (2009) The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol Lett 189(3):177–183. doi:10.1016/j.toxlet.2009.04.017

    Article  PubMed  CAS  Google Scholar 

  • Contreras J, Xie J, Chen Y, Pei H, Zhang G, Fraser C, Hamm-Alvarez S (2010) Intracellular uptake and trafficking of difluoroboron dibenzoylmethane—polylactide nanoparticles in HeLa cells. ACS Nano 4(5):2735–2747

    Article  PubMed  CAS  Google Scholar 

  • Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, Mailänder V (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci 8(12):1135–1143. doi:10.1002/mabi.200800123

    Article  PubMed  CAS  Google Scholar 

  • Dekkers S, Krystek P, Peters RJB, DlPK Lankveld, Bokkers BGH, van Hoeven-Arentzen PH, Bouwmeester H, Oomen AG (2010) Presence and risks of nanosilica in food products. Nanotoxicology 0:1–13. doi:10.3109/17435390.2010.519836

    Article  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, Macnee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2:10. doi:10.1186/1743-8977-2-10

    Article  PubMed  Google Scholar 

  • Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100(1):303–315. doi:10.1093/toxsci/kfm217

    Article  PubMed  CAS  Google Scholar 

  • Dworetzky SI, Lanford RE, Feldherr CM (1988) The effects of variations in the number and sequence of targeting signals on nuclear uptake. J Cell Biol 107(4):1279–1287

    Article  PubMed  CAS  Google Scholar 

  • Eom H-J, Choi J (2009) Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol In Vitro 23(7):1326–1332. doi:10.1016/j.tiv.2009.07.010

    Article  PubMed  CAS  Google Scholar 

  • European Committee for Standardization (2008) ISO TS 27687, nanotechnologies—terminology and definitions for nano-objects—nanoparticles, nanofibre, and nanoplate

  • Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62(3):362–374. doi:10.1016/j.addr.2009.11.008

    Article  PubMed  CAS  Google Scholar 

  • FAO/WHO (2010) expert meeting on the application of nanotechnologies in the food and agriculture sectors: potential food safety implications—meeting report

  • Gemeinhart RA, Luo D, Saltzman WM (2005) Cellular fate of a modular DNA delivery system mediated by silica nanoparticles. Biotechnol Prog 21(2):532–537. doi:10.1021/bp049648w

    Article  PubMed  CAS  Google Scholar 

  • Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105(33):11613–11618. doi:10.1073/pnas.0801763105

    Article  PubMed  CAS  Google Scholar 

  • Harley JD, Margolis J (1961) Haemolytic activity of colloidal silica. Nature 189:1010–1011

    Article  PubMed  CAS  Google Scholar 

  • Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856. doi:10.1038/ni.1631

    Article  PubMed  CAS  Google Scholar 

  • Huang D-M, Hung Y, Ko B-S, Hsu S-C, Chen W-H, Chien C-L, Tsai C-P, Kuo C-T, Kang J-C, Yang C-S, Mou C-Y, Chen Y-C (2005) Highly efficient cellular labeling of mesoporous nanoparticles in human mesenchymal stem cells: implication for stem cell tracking. FASEB J 19(14):2014–2016. doi:10.1096/fj.05-4288fje

    PubMed  CAS  Google Scholar 

  • Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech 3(3):145–150. doi:10.1038/nnano.2008.30

    Article  CAS  Google Scholar 

  • Jin Y, Kannan S, Wu M, Zhao JX (2007) Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol 20(8):1126–1133. doi:10.1021/tx7001959

    Article  PubMed  CAS  Google Scholar 

  • Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J (2007) Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28(18):2876–2884. doi:10.1016/j.biomaterials.2007.02.021

    Article  PubMed  CAS  Google Scholar 

  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Huang Y-W, Zhou X-D, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217(3):252–259. doi:10.1016/j.taap.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  • Lison D, Thomassen LCJ, Rabolli V, Gonzalez L, Napierska D, Seo JW, Kirsch-Volders M, Hoet P, Kirschhock CEA, Martens JA (2008) Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104(1):155–162. doi:10.1093/toxsci/kfn072

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Liong M, Sherman S, Xia T, Kovochich M, Nel AE, Zink JI, Tamanoi F (2007) Mesoporous silica nanoparticles for cancer therapy: energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. Nanobiotechnology 3(2):89–95. doi:10.1007/s12030-008-9003-3

    Article  PubMed  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269. doi:10.1038/444267a

    Article  PubMed  CAS  Google Scholar 

  • Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R, Gunko YK, Byrne S, Rakovich YP, Donegan JF, Sukhanova A, Conroy J, Cottell D, Gaponik N, Rogach A, Volkov Y (2007) Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett 7(11):3452–3461. doi:10.1021/nl0719832

    Article  PubMed  CAS  Google Scholar 

  • Napierska D, Thomassen LCJ, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5(7):846–853. doi:10.1002/smll.200800461

    Article  PubMed  CAS  Google Scholar 

  • Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2(8):1639–1644. doi:10.1021/nn800330a

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839. doi:10.1289/ehp.7339

    Google Scholar 

  • OECD (2005) Screening information data set (Synthetic amourphous silica and silicates, CAS-No.1344-00-9, CAS-No.1344-95-2, CAS-No.7631-86-9, CAS-No.112926-00-8, CAS-No.112945-52-5)

  • Paine PL, Moore LC, Horowitz SB (1975) Nuclear envelope permeability. Nature 254(5496):109–114

    Article  PubMed  CAS  Google Scholar 

  • Park E-J, Park K (2009) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Let 184(1):18–25. doi:10.1016/j.toxlet.2008.10.012

    Article  CAS  Google Scholar 

  • Park MVDZ, Annema W, Salvati A, Lesniak A, Elsaesser A, Barnes C, Mckerr G, Howard CV, Lynch I, Dawson KA, Piersma AH, WHd Jong (2009) In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl Pharmacol 240(1):108–116. doi:10.1016/j.taap.2009.07.019

    Article  PubMed  CAS  Google Scholar 

  • Raub TJ, Koroly MJ, Roberts RM (1990) Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network. J Cell Physiol 143(1):1–12. doi:10.1002/jcp.1041430102

    Article  PubMed  CAS  Google Scholar 

  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377(Pt 1):159–169. doi:10.1042/BJ20031253

    Article  PubMed  CAS  Google Scholar 

  • Shi H, He X, Yuan Y, Wang K, Liu D (2010) Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking. Anal Chem 82(6):2213–2220. doi:10.1021/ac902417s

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Kumar A, Karakoti A, Seal S, Self WT (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst 6(10):1813–1820

    Article  PubMed  CAS  Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. doi:10.1016/j.addr.2008.03.012

    Article  PubMed  CAS  Google Scholar 

  • Stayton I, Winiarz J, Shannon K, Ma Y (2009) Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level. Anal Bioanal Chem 394(6):1595–1608. doi:10.1007/s00216-009-2839-0

    Article  PubMed  CAS  Google Scholar 

  • Villanueva A, Cañete M, Roca AG, Calero M, Veintemillas-Verdaguer S, Serna CJ, MdP Morales, Miranda R (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20(11):115103. doi:10.1088/0957-4484/20/11/115103

    Article  PubMed  Google Scholar 

  • Warheit DB, McHugh TA, Hartsky MA (1995) Differential pulmonary responses in rats inhaling crystalline, colloidal or amorphous silica dusts. Scand J Work Environ Health 21(Suppl 2):19–21

    PubMed  CAS  Google Scholar 

  • Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, Bandyopadhyay S, Teeguarden JG, Pounds JG, Thrall BD (2008) Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107(2):553–569. doi:10.1093/toxsci/kfn250

    Article  PubMed  Google Scholar 

  • Xie G, Sun J, Zhong G, Shi L, Zhang D (2010) Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch Toxicol 84(3):183–190. doi:10.1007/s00204-009-0488-x

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Liu J, He H, Zhou L, Gong C, Wang X, Yang L, Yuan J, Huang H, He L, Zhang B, Zhuang Z (2010) SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol 7:1. doi:10.1186/1743-8977-7-1

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Grabinski C, Schrand A, Murdock R, Wang W, Gu B, Schlager J, Hussain S (2009) Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11(1):15–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Markus Schön (Institute for Technical Chemistry, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany) for his support with DLS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Rawi, M., Diabaté, S. & Weiss, C. Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells. Arch Toxicol 85, 813–826 (2011). https://doi.org/10.1007/s00204-010-0642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0642-5

Keywords

Navigation