Skip to main content

Advertisement

Log in

Characterization of the role of protein–cysteine residues in the binding with sodium arsenite

  • INORGANIC COMPOUNDS
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

To better characterize the interaction of protein–cysteines with sodium arsenite, arsenic-binding proteins were identified from the arsenic-resistant Chinese hamster ovary cell line SA7 using a p-aminophenylarsine oxide (PAO)-agarose matrix in combination with proteomic techniques. Twenty of the isolated arsenic-binding proteins were further peptide-mapped by MALDI-Q-TOF-MS. The binding capacity of PAO-agarose-retained proteins was then verified by re-applying Escherichia coli overexpressed recombinant proteins with various numbers of cysteine residues onto the PAO-agarose matrix. The results showed that recombinant heat shock protein 27 (HSP27, with one cysteine residue), reticulocalbin-3 (RCN3, with no cysteine residue), galectin-1 (GAL1, with six cysteine residues), but not peroxiredoxin 6 (Prdx6, with one cysteine residue but not retained by the PAO-agarose matrix), were bound to the PAO-agarose matrix. The six free cysteine residues in GAL1 were individually or double-mutated to alanine by means of site-directed mutagenesis and subjected to CD and ICP-MS analysis. The binding capacity of GAL1 for sodium arsenite was significantly attenuated in C16A, C88A and all double mutant clones. Taken together, our current data suggest that the cysteine residues in GAL1 may play a critical role in the binding of arsenic, but that in the case of RCN3 and Prdx6, this interaction may be mediated by other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PAO:

p-Aminophenylarsine oxide

RCN3:

Reticulocalbin-3

GAL1:

Galectin-1

Prdx6:

Peroxiredoxin 6

CD:

Circular dichroism

ICP-MS:

Inductively coupled plasma mass spectrometry

2-DE:

Two-dimensional polyacrylamide gel electrophoresis

References

  • Alexander JS, Minagar A, Harper M, Robinson-Jackson S, Jennings M, Smith SJ (2007) Proteomic analysis of human cerebral endothelial cells activated by multiple sclerosis serum and IFNbeta-1b. J Mol Neurosci 32:169–178

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee H, Rosen BP (1996) Spatial proximity of Cys113, Cys172, and Cys422 in the metalloactivation domain of the ArsA ATPase. J Biol Chem 271:24465–24470

    Article  PubMed  CAS  Google Scholar 

  • Brown KG, Boyle KE, Chen CW, Gibb HJ (1989) A dose-response analysis of skin cancer from inorganic arsenic in drinking water. Risk Anal 9:519–528

    Article  PubMed  CAS  Google Scholar 

  • Bryk R, Griffin P, Nathan C (2000) Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211–215

    Article  PubMed  CAS  Google Scholar 

  • Carlson-Lynch H, Beck BD, Boardman PD (1994) Arsenic risk assessment. Environ Health Perspect 102:354–356

    Article  PubMed  CAS  Google Scholar 

  • Carter DE, Aposhian HV, Gandolfi AJ (2003) The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicochemical review. Toxicol Appl Pharmacol 193:309–334

    Article  CAS  Google Scholar 

  • Chang KN, Lee TC, Tam MF, Chen YC, Lee LW, Lee SY, Lin PJ, Huang RN (2003) Identification of galectin I and thioredoxin peroxidase II as two arsenic-binding proteins in Chinese hamster ovary cells. Biochem J 371:495–503

    Article  PubMed  CAS  Google Scholar 

  • Chen CJ, Chuang YC, You SL, Lin TM, Wu HY (1986) A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br J Cancer 53:399–405

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM et al (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88:1052–1061

    PubMed  CAS  Google Scholar 

  • Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM et al (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89:3345–3353

    PubMed  CAS  Google Scholar 

  • Crete P, Landry J (1990) Induction of HSP27 phosphorylation and thermoresistance in Chinese hamster cells by arsenite, cycloheximide, A23187, and EGTA. Radiat Res 121:320–327

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Latoud C, Buache E, Javouhey E, Arrigo AP (2005) Substitution of the unique cysteine residue of murine Hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid Redox Signal 7:436–445

    Article  PubMed  CAS  Google Scholar 

  • Gallagher BM, Phelan SA (2007) Investigating transcriptional regulation of Prdx6 in mouse liver cells. Free Radic Biol Med 42:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi J, Kasai K (1991) Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin. J Biol Chem 266:23648–23653

    PubMed  CAS  Google Scholar 

  • Hoffman RD, Lane MD (1992) Iodophenylarsine oxide and arsenical affinity chromatography: new probes for dithiol proteins. Application to tubulins and to components of the insulin receptor-glucose transporter signal transduction pathway. J Biol Chem 267:14005–14011

    CAS  Google Scholar 

  • Hofmann B, Hecht HJ, Flohé L (2002) Peroxiredoxins. Biol Chem 383:347–364

    Article  CAS  Google Scholar 

  • Honore B (2009) The rapidly expanding CREC protein family: members, localization, function, and role in disease. BioEssays 31:262–277

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Yamada M, Sato H, Matsue M, Taketani S, Nakayama K, Sugita Y, Bannai S (1993) Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. J Biol Chem 268:18633–18636

    PubMed  CAS  Google Scholar 

  • Iwahara S, Satoh H, Song DX, Webb J, Burlingame AL, Nagae Y, Muller-Eberhard U (1995) Purification, characterization, and cloning of a heme-binding protein (23 kDa) in rat liver cytosol. Biochemistry 34:13398–13406

    Article  PubMed  CAS  Google Scholar 

  • Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94:2102–2111

    PubMed  CAS  Google Scholar 

  • Kalef E, Gitler C (1994) Purification of vicinal dithiol-containing proteins by arsenical-based affinity chromatography. Methods Enzymol 233:395–403

    Article  PubMed  CAS  Google Scholar 

  • Kang SW, Baines IC, Rhee SG (1998) Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem 273:6303–6311

    Article  CAS  Google Scholar 

  • Kitchin KT (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems and methylated arsenic metabolites. Toxicol Appl Pharm 172:249–261

    Article  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2005) Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-alpha. Toxicol Appl Pharmacol 206:66–72

    Article  PubMed  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2006) Arsenite binding to synthetic peptides: the effect of increasing length between two cysteines. J Biochem Mol Toxicol 20:35–38

    Article  PubMed  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2008) The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. J Inorg Biochem 102:532–539

    Article  PubMed  CAS  Google Scholar 

  • Lantz RC, Lynch BJ, Boitano S, Poplin GS, Littau S, Tsaprailis G, Burgess JL (2007) Pulmonary biomarkers based on alterations in protein expression after exposure to arsenic. Environ Health Perspect 115:586–591

    Article  PubMed  CAS  Google Scholar 

  • Lau AT, He QY, Chiu JF (2004) A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochem J 382:641–650

    Article  PubMed  CAS  Google Scholar 

  • Liao DI, Kapadia G, Ahmed H, Vasta GR, Herzberg O (1994) Structure of S-lectin, a developmentally regulated vertebrate beta-galactoside-binding protein. Proc Natl Acad Sci USA 91:1428–1432

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Huang CF, Chen WY, Chang YY, Ding WH, Lin MS, Wu SH, Huang RN (2006) Characterization of the interaction of galectin-1 with sodium arsenite. Chem Res Toxicol 19:469–474

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lucendo MF, Solis D, Andre S, Hirabayashi J, Kasai K, Kaltner H, Gabius HJ, Romero A (2004) Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J Mol Biol 343:957–970

    Article  PubMed  CAS  Google Scholar 

  • Manevich Y, Fisher AB (2005) Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic Biol Med 38:1422–1432

    Article  PubMed  CAS  Google Scholar 

  • Manevich Y, Sweitzer T, Pak JH, Feinstein SI, Muzykantov V, Fisher AB (2002) 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proc Natl Acad Sci USA 99:11599–11604

    Article  PubMed  CAS  Google Scholar 

  • Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc Natl Acad Sci USA 101:3780–3785

    Article  PubMed  CAS  Google Scholar 

  • Menzel DB, Hamadeh HK, Lee E, Meacher DM, Said V, Rasmussen RE, Greene H, Roth RN (1999) Arsenic binding proteins from human lymphoblastoid cells. Toxicol Lett 105:89–101

    Article  PubMed  CAS  Google Scholar 

  • Mizumura A, Watanabe T, Kobayashi Y, Hirano S (2010) Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells. Toxicol Appl Pharmacol 242:119–125

    Article  PubMed  CAS  Google Scholar 

  • Mortz E, Krogh TN, Vorum H, Gorg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359–1363

    Article  PubMed  CAS  Google Scholar 

  • Peshenko IV, Shichi H (2001) Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic Biol Med 31:292–303

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Fahlbusch B, Otto M (2009) Size exclusion chromatography coupled to electrospray ionizationmass spectrometry for analysis and quantitative characterization of arsenic interactions with peptides and proteins. J Mass Spectrom 44:898–910

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Shen ZX, Yan H, Chen J, Zeng XY, Li JM, Li XS, Wu W, Xiong SM, Zhao WL et al (2001) Studies on the clinical efficacy and pharmacokinetics of low-dose arsenic trioxide in the treatment of relapsed acute promyelocytic leukemia: a comparison with conventional dosage. Leukemia 15:735–741

    Article  PubMed  CAS  Google Scholar 

  • Shuvaeva TM, Novoselov VI, Fesenko EE, Lipkin VM (2009) Peroxiredoxins, a new family of antioxidant proteins. Bioorg Khim 35:581–596

    PubMed  CAS  Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT (1992) Cancer risks from arsenic in drinking water. Environ Health Perspect 97:259–267

    Article  PubMed  CAS  Google Scholar 

  • Styblo M, Thomas DJ (1997) Binding of arsenicals to proteins in an in vitro methylation system. Toxicol Appl Pharmacol 147:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tracey BM, Feizi T, Abbott WM, Carruthers RA, Green BN, Lawson AM (1992) Subunit molecular mass assignment of 14,654 Da to the soluble beta-galactoside-binding lectin from bovine heart muscle and demonstration of intramolecular disulfide bonding associated with oxidative inactivation. J Biol Chem 267:10342–10347

    PubMed  CAS  Google Scholar 

  • Tsuji A, Kikuchi Y, Sato Y, Koide S, Yuasa K, Nagahama M, Matsuda Y (2006) A proteomic approach reveals transient association of reticulocalbin-3, a novel member of the CREC family, with the precursor of subtilisin-like proprotein convertase, PACE4. Biochem J 396:51–59

    Article  PubMed  CAS  Google Scholar 

  • Vahter M, Marafante E (1985) Reduction and binding of arsenate in marmoset monkeys. Arch Toxicol 57:119–124

    Article  PubMed  CAS  Google Scholar 

  • Vahter M, Marafante E, Lindgren A, Dencker L (1982) Tissue distribution and subcellular binding of arsenic in marmoset monkeys after injection of 74As-arsenite. Arch Toxicol 51:65–67

    Article  CAS  Google Scholar 

  • Wang HF, Lee TC (1993) Glutathione S-transferase pi facilitates the excretion of arsenic from arsenic-resistant Chinese hamster ovary cells. Biochem Biophys Res Commun 192:1093–1099

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Feinstein SI, Manevich Y, Ho YS, Fisher AB (2004) Lung injury and mortality with hyperoxia are increased in peroxiredoxin 6 gene-targeted mice. Free Radic Biol Med 37:1736–1743

    Article  PubMed  CAS  Google Scholar 

  • Warner ML, Moore LE, Smith MT, Kalman DA, Fanning E, Smith AH (1994) Increased micronuclei in exfoliated bladder cells of individuals who chronically ingest arsenic-contaminated water in Nevada. Cancer Epidemiol Biomarkers Prev 3:583–590

    PubMed  CAS  Google Scholar 

  • Yan H, Wang N, Weinfeld M, Cullen WR, Le XC (2009) Identification of arsenic-binding proteins in human cells by affinity chromatography and mass spectrometry. Anal Chem 81:4144–4152

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yang F, Shim JY, Kirk KL, Anderson DE, Chen X (2007) Identification of arsenic-binding proteins in human breast cancer cells. Cancer Lett 255:95–106

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Jing Y, Styblo M, Chen Z, Waxman S (2005) Glutathione-S-transferase pi inhibits As2O3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide catabolism. Blood 105:1198–1203

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support provided by the National Science Council of Taiwan, Republic of China (NSC 97-2321-B-002-013-MY3). Proteomic mass spectrometry analyses were performed by the Core Facilities for Proteomics and Glycomics located at the Institute of Biological Chemistry, Academia Sinica, and were supported by a National Science Council grant (NSC 98-3112-P-001-023) and the Academia Sinica.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yung-Hsi Kao or Rong-Nan Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (DOC 2552 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, YY., Kuo, TC., Hsu, CH. et al. Characterization of the role of protein–cysteine residues in the binding with sodium arsenite. Arch Toxicol 86, 911–922 (2012). https://doi.org/10.1007/s00204-012-0828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0828-0

Keywords

Navigation