Skip to main content

Advertisement

Log in

Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

There is increasing concern about the toxicity of inhaled multi-walled carbon nanotubes (MWCNTs). Pulmonary macrophages represent the primary cell type involved in the clearance of inhaled particulate materials, and induction of apoptosis in these cells has been considered to contribute to the development of lung fibrosis. We have investigated the apoptotic, inflammogenic, and fibrogenic potential of two types of MWCNTs, characterised by a contrasting average tube length and entanglement/agglomeration. Both nanotube types triggered H2O2 formation by RAW 264.7 macrophages, but in vitro toxicity was exclusively seen with the longer MWCNT. Both types of nanotubes caused granuloma in the mouse lungs. However, the long MWCNT induced a more pronounced pro-fibrotic (mRNA expression of matrix metalloproteinase-8 and tissue inhibitor of metalloproteinase-1) and inflammatory (serum level of monocyte chemotactic protein-1) response. Masson trichrome staining also revealed epithelial cell hyperplasia for this type of MWCNT. Enhanced apoptosis was detected by cleaved caspase 3 immunohistochemistry in lungs of mice treated with the long and rigid MWCNT and, to a lesser extent, with the shorter, highly agglomerated MWCNT. However, staining was merely localised to granulomatous foci, and neither of the MWCNTs induced apoptosis in vitro, evaluated by caspase 3/7 activity in RAW 264.7 cells. In addition, our study reveals that the inflammatory and pro-fibrotic effects of MWCNTs in the mouse lung can vary considerably depending on their composition. The in vitro analysis of macrophage apoptosis appears to be a poor predictor of their pulmonary hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beamer CA, Holian A (2007) Antigen-presenting cell population dynamics during murine silicosis. Am J Respir Cell Mol Biol 37:729–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho HY, Reddy SP, Kleeberger SR (2006) Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8:76–87

    Article  CAS  PubMed  Google Scholar 

  • Clift MJ, Endes C, Vanhecke D, Wick P, Gehr P, Schins RP, Petri-Fink A, Rothen-Rutishauser B (2014) A comparative study of different in vitro lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes. Toxicol Sci 137:55–64

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  PubMed  Google Scholar 

  • Di Giorgio ML, Di Bucchianico S, Ragnelli AM, Aimola P, Santucci S, Poma A (2011) Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722:20–31

    Article  PubMed  Google Scholar 

  • Doll NJ, Stankus RP, Barkman HW (1983) Immunopathogenesis of asbestosis, silicosis, and coal workers’ pneumoconiosis. Clin Chest Med 4:3–14

    CAS  PubMed  Google Scholar 

  • Donaldson K (2000) Nonneoplastic lung responses induced in experimental animals by exposure to poorly soluble nonfibrous particles. Inhal Toxicol 12:121–139

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A (2006) Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Particle Fibre Toxicol 7:5

    Article  Google Scholar 

  • Driscoll KE, Lindenschmidt RC, Maurer JK, Higgins JM, Ridder G (1990) Pulmonary response to silica or titanium dioxide: inflammatory cells, alveolar macrophage-derived cytokines, and histopathology. Am J Respir Cell Mol Biol 2:381–390

    Article  CAS  PubMed  Google Scholar 

  • Elgrabli D, Abella-Gallart S, Robidel F, Rogerieux F, Boczkowski J, Lacroix G (2008) Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology 253:131–136

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn IP (2004) Macrophage apoptosis in host immunity to mycobacterial infections. Biochem Soc Trans 32:496–498

    Article  CAS  PubMed  Google Scholar 

  • Gasser M, Wick P, Clift MJ, Blank F, Diener L, Yan B, Gehr P, Krug HF, Rothen-Rutishauser B (2012) Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Part Fibre Toxicol 9:17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen K, Mossman BT (1987) Generation of superoxide (O2–.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res 47:1681–1686

    CAS  PubMed  Google Scholar 

  • Hirano S, Kanno S, Furuyama A (2008) Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232:244–251

    Article  CAS  PubMed  Google Scholar 

  • Jaurand MC, Renier A, Daubriac J (2009) Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol 6:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Kane AB, MacDonald JL, Moalli PA (1986) Acute injury and regeneration of mesothelial cells produced by crocidolite asbestos fibers. Am Rev Respir Dis 133:A198

    Google Scholar 

  • Kato T, Totsuka Y, Ishino K, Matsumoto Y, Tada Y, Nakae D, Goto S, Masuda S, Ogo S, Kawanishi M, Yagi T, Matsuda T, Watanabe M, Wakabayashi K (2013) Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicology 7:452–461

    Article  CAS  PubMed  Google Scholar 

  • Kermanizadeh A, Pojana G, Gaiser BK, Birkedal R, Bilanicova D, Wallin H, Jensen KA, Sellergren B, Hutchison GR, Marcomini A, Stone V (2013) In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology 7:301–313

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Lim HT, Minai-Tehrani A, Kwon JT, Shin JY, Woo CG, Choi M, Baek J, Jeong DH, Ha YC, Chae CH, Song KS, Ahn KH, Lee JH, Sung HJ, Yu IJ, Beck GR Jr, Cho MH (2010) Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung. J Toxicol Environ Health A 73:1530–1543

    Article  CAS  PubMed  Google Scholar 

  • Kisin ER, Murray AR, Sargent L, Lowry D, Chirila M, Siegrist KJ, Schwegler-Berry D, Leonard S, Castranova V, Fadeel B, Kagan VE, Shvedova AA (2011) Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol 252:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Naya M, Ema M, Endoh S, Maru J, Mizuno K, Nakanishi J (2010) Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology 276:143–153

    Article  CAS  PubMed  Google Scholar 

  • Koerten HK, Hazekamp J, Kroon M, Daems WT (1990) Asbestos body formation and iron accumulation in mouse peritoneal granulomas after the introduction of crocidolite asbestos fibers. Am J Pathol 136:141–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwano K, Miyazaki H, Hagimoto N, Kawasaki M, Fujita M, Kunitake R, Kaneko Y, Hara N (1999) The involvement of Fas–Fas ligand pathway in fibrosing lung diseases. Am J Respir Cell Mol Biol 20:53–60

    Article  CAS  PubMed  Google Scholar 

  • Leigh J, Wang H, Bonin A, Peters M, Ruan X (1997) Silica-induced apoptosis in alveolar and granulomatous cells in vivo. Environ Health Perspect 105(Suppl 5):1241–1245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, Zhao QF, Li QN (2007a) Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22:415–421

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, Shvedova A, Luster MI, Simeonova PP (2007b) Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liang J, Jung Y, Tighe RM, Xie T, Liu N, Leonard M, Gunn MD, Jiang D, Noble PW (2012) A macrophage subpopulation recruited by CC chemokine ligand-2 clears apoptotic cells in noninfectious lung injury. Am J Physiol Lung Cell Mol Physiol 302:L933–L940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Deng X, Shen X, Dong L, Liu Y (2012) Comparison of cytotoxicity of pristine and covalently functionalized multi-walled carbon nanotubes in RAW 264.7 macrophages. J Nanosci Nanotechnol 12:274–283

    Article  CAS  PubMed  Google Scholar 

  • Mariani TJ, Roby JD, Mecham RP, Parks WC, Crouch E, Pierce RA (1996) Localization of type I procollagen gene expression in silica-induced granulomatous lung disease and implication of transforming growth factor-beta as a mediator of fibrosis. Am J Pathol 148:151–164

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, Castranova V, Porter DW (2011) Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Particle Fibre Toxicol 8:21

    Article  CAS  Google Scholar 

  • Miller BG, Searl A, Davis JM, Donaldson K, Cullen RT, Bolton RE, Buchanan D, Soutar CA (1999) Influence of fibre length, dissolution and biopersistence on the production of mesothelioma in the rat peritoneal cavity. Ann Occup Hyg 43:155–166

    Article  CAS  PubMed  Google Scholar 

  • Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214

    Article  CAS  PubMed  Google Scholar 

  • Moolgavkar SH, Brown RC, Turim J (2001) Biopersistence, fiber length, and cancer risk assessment for inhaled fibers. Inhal Toxicol 13:755–772

    Article  CAS  PubMed  Google Scholar 

  • Mossman BT (2000) Mechanisms of action of poorly soluble particulates in overload-related lung pathology. Inhal Toxicol 12:141–148

    Article  CAS  PubMed  Google Scholar 

  • Muhlfeld C, Poland CA, Duffin R, Brandenberger C, Murphy FA, Rothen-Rutishauser B, Gehr P, Donaldson K (2012) Differential effects of long and short carbon nanotubes on the gas-exchange region of the mouse lung. Nanotoxicology 6:867–879

    Article  PubMed  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231

    Article  CAS  PubMed  Google Scholar 

  • Murphy FA, Schinwald A, Poland CA, Donaldson K (2012) The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part Fibre Toxicol 9:8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagatomo H, Morimoto Y, Oyabu T, Hirohashi M, Ogami A, Yamato H, Kuroda K, Higashi T, Tanaka I (2005) Expression of heme oxygenase-1 in the lungs of rats exposed to crocidolite asbestos. Inhal Toxicol 17:293–296

    Article  CAS  PubMed  Google Scholar 

  • Niu J, Kolattukudy PE (2009) Role of MCP-1 in cardiovascular disease: molecular mechanisms and clinical implications. Clin Sci 117:95–109

    Article  CAS  PubMed  Google Scholar 

  • Oberdorster G (1996) Evaluation and use of animal models to assess mechanisms of fibre carcinogenicity. IARC Sci Publ 140:107–125

    Google Scholar 

  • Osmond-McLeod MJ, Poland CA, Murphy F, Waddington L, Morris H, Hawkins SC, Clark S, Aitken R, McCall MJ, Donaldson K (2011) Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres. Parti Fibre Toxicol 8:15

    Article  CAS  Google Scholar 

  • Pacurari M, Qian Y, Fu W, Schwegler-Berry D, Ding M, Castranova V, Guo NL (2012) Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J Toxicol Environ Health A 75:129–147

    Article  CAS  PubMed  Google Scholar 

  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428

    Article  CAS  PubMed  Google Scholar 

  • Porter DW, Ramsey D, Hubbs AF, Battelli L, Ma J, Barger M, Landsittel D, Robinson VA, McLaurin J, Khan A, Jones W, Teass A, Castranova V (2001) Time course of pulmonary response of rats to inhalation of crystalline silica: histological results and biochemical indices of damage, lipidosis, and fibrosis. J Environ Pathol Toxicol Oncol 20(Suppl 1):1–14

    CAS  PubMed  Google Scholar 

  • Roda E, Coccini T, Acerbi D, Barni S, Vaccarone R, Manzo L (2011) Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: morphohistochemical evaluations. Histol Histopathol 26:357–367

    CAS  PubMed  Google Scholar 

  • Sabo-Attwood T, Ramos-Nino M, Bond J, Butnor KJ, Heintz N, Gruber AD, Steele C, Taatjes DJ, Vacek P, Mossman BT (2005) Gene expression profiles reveal increased mClca3 (Gob5) expression and mucin production in a murine model of asbestos-induced fibrogenesis. Am J Pathol 167:1243–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sato T, Takeno M, Honma K, Yamauchi H, Saito Y, Sasaki T, Morikubo H, Nagashima Y, Takagi S, Yamanaka K, Kaneko T, Ishigatsubo Y (2006) Heme oxygenase-1, a potential biomarker of chronic silicosis, attenuates silica-induced lung injury. Am J Respir Crit Care Med 174:906–914

    Article  CAS  PubMed  Google Scholar 

  • Schinwald A, Chernova T, Donaldson K (2012a) Use of silver nanowires to determine thresholds for fibre length-dependent pulmonary inflammation and inhibition of macrophage migration in vitro. Part Fibre Toxicol 9:47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schinwald A, Murphy FA, Prina-Mello A, Poland CA, Byrne F, Movia D, Glass JR, Dickerson JC, Schultz DA, Jeffree CE, Macnee W, Donaldson K (2012b) The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci 128:461–470

    Article  CAS  PubMed  Google Scholar 

  • Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Stone V, Johnston H, Schins RP (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Iyonaga K, Ichiyasu H, Saita N, Yamasaki H, Ando M (1999) Clinical significance of MCP-1 levels in BALF and serum in patients with interstitial lung diseases. Eur Respir J 14:376–382

    Article  CAS  PubMed  Google Scholar 

  • Takaya M, Serita F, Yamazaki K, Aiso S, Kubota H, Asakura M, Ikawa N, Nagano K, Arito H, Fukushima S (2010) Characteristics of multiwall carbon nanotubes for an intratracheal instillation study with rats. Ind Health 48:452–459

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Terada M, Ariyoshi K, Morimoto K (2010) Monocyte chemoattractant protein-1/CC chemokine ligand 2 enhances apoptotic cell removal by macrophages through Rac1 activation. Biochem Biophys Res Commun 399:677–682

    Article  CAS  PubMed  Google Scholar 

  • van Berlo D, Wessels A, Boots AW, Wilhelmi V, Scherbart AM, Gerloff K, van Schooten FJ, Albrecht C, Schins RP (2010) Neutrophil-derived ROS contribute to oxidative DNA damage induction by quartz particles. Free Radic Biol Med 49:1685–1693

    Article  PubMed  Google Scholar 

  • van Berlo D, Clift MJ, Albrecht C, Schins RP (2012) Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Med Wkly 142:w13698

    Google Scholar 

  • Vietti G, Ibouraadaten S, Palmai-Pallag M, Yakoub Y, Bailly C, Fenoglio I, Marbaix E, Lison D, van den Brule S (2013) Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay. Part Fibre Toxicol 10:52

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Jia G, Wang H, Nie H, Yan L, Deng XY, Wang S (2009) Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J Nanosci Nanotechnol 9:3025–3033

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM (2011) Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol 8:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Guo J, Chen T, Nie H, Wang H, Zang J, Cui X, Jia G (2012) Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicol In Vitro 26:799–806

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmi V, Fischer U, van Berlo D, Schulze-Osthoff K, Schins RP, Albrecht C (2012) Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: facts and artefacts. Toxicol In Vitro 26:323–334

    Article  CAS  PubMed  Google Scholar 

  • Yao SQ, Rojanasakul LW, Chen ZY, Xu YJ, Bai YP, Chen G, Zhang XY, Zhang CM, Yu YQ, Shen FH, Yuan JX, Chen J, He QC (2011) Fas/FasL pathway-mediated alveolar macrophage apoptosis involved in human silicosis. Apoptosis 16:1195–1204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Burkhard Stahlmecke (IUTA) for the electron microscopy characterisation of MWCNTs, and Christel Weishaupt and Petra Gross (IUF) for technical support. This study was financially supported by the Federal Ministry of Education and Research (BMBF) and an ERS/Marie Curie Fellowship (awarded to AWB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. van Berlo or C. Albrecht.

Additional information

D. van Berlo and V. Wilhelmi have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Berlo, D., Wilhelmi, V., Boots, A.W. et al. Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung. Arch Toxicol 88, 1725–1737 (2014). https://doi.org/10.1007/s00204-014-1220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1220-z

Keywords

Navigation