Skip to main content
Log in

Pointwise Green Function Bounds for Shock Profiles of Systems with Real Viscosity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

Following the pointwise semigroup approach of [ZH,MZ.1], we establish sharp pointwise Green function bounds and consequent linearized stability for viscous shock profiles of general hyperbolic-parabolic systems of conservation laws of dissipative type, under the necessary assumptions ([Z.1,Z.3,Z.4]) of spectral stability, i.e., stable point spectrum of the linearized operator about the wave; transversality of the connecting profile; and hyperbolic stability of the corresponding ideal shock of the associated inviscid system, with no additional assumptions on the structure or strength of the shock. These bounds are used in a companion paper [MZ.2] to establish nonlinear stability of small-amplitude Lax shocks of symmetrizable hyperbolic-parabolic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J., Gardner, R., Jones, C.K.R.T.: A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Barmin, A.A., Egorushkin, S.A.: Stability of shock waves. Adv. Mech. 15, 3–37 (1992)

    MathSciNet  Google Scholar 

  3. Benzoni-Gavage, S., Serre, D., Zumbrun, K.: Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32, 929–962 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Conley, C., Smoller, J.: On the structure of magnetohydrodynamic shock waves. Commun. Pure Appl. Math. 28, 367–375 (1974)

    Google Scholar 

  5. Courant, R., Hilbert, D.: Methods of mathematical physics, Vol. I. Interscience Publishers, Inc., New York, N.Y., xv+561 pp, (1953)

  6. Erpenbeck, J.J.: Stability of step shocks. Phys. Fluids 5(10), 1181–1187 (1962)

    MATH  Google Scholar 

  7. Evans, J.W.: Nerve axon equations: I, Linear approximations. Ind. Univ. Math. J. 21, 877–885 (1972)

    Google Scholar 

  8. Evans, J.W.: Nerve axon equations: II, Stability at rest. Ind. Univ. Math. J. 22, 75–90 (1972)

    Google Scholar 

  9. Evans, J.W.: Nerve axon equations: III, Stability of the nerve impulse. Ind. Univ. Math. J. 22, 577–593 (1972)

    Google Scholar 

  10. Evans, J.W.: Nerve axon equations: IV, The stable and the unstable impulse. Ind. Univ. Math. J. 24, 1169–1190 (1975)

    Google Scholar 

  11. Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, 19. American Mathematical Society. Providence, RI, xviii+662 pp. ISBN: 0-8218-0772-2, 1998

  12. Freistühler, H.: Small amplitude intermediate magnetohydrodynamic shock waves. Phys. Scripta T74, 26–29 (1998)

    Google Scholar 

  13. Freistühler, H.: Profiles for small Laxian shock waves in Kawashima type systems of conservation laws. Preprint, 2000.

  14. Freistühler, H., Szmolyan, P.: Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal. 26, 112–128 (1995)

    Google Scholar 

  15. Freistühler, H., Zumbrun, K.: Examples of unstable viscous shock waves. Unpublished note, Institut für Mathematik, RWTH Aachen, February, 1998

  16. Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs, NY (1964), Reprint Ed. (1983)

  17. Gardner, R., Jones, C.K.R.T.: A stability index for steady state solutions of boundary value problems for parabolic systems. J. Diff. Eqs. 91, 181–203 (1991)

    MATH  Google Scholar 

  18. Gardner, R., Jones, C.K.R.T.: Traveling waves of a perturbed diffusion equation arising in a phase field model. Ind. Univ. Math. J. 38, 1197–1222 (1989)

    Google Scholar 

  19. Gardner, R., Zumbrun, K.: The Gap Lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51, 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  20. Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Amer. J. Math. 73, 256–274 (1951)

    MathSciNet  MATH  Google Scholar 

  21. Goodman, J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95, 325–344 (1986)

    MathSciNet  MATH  Google Scholar 

  22. Henry, D.: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, Springer-Verlag, Berlin iv + 348 pp. 1981

  23. Hoff, D.: Global well-posedness of the Cauchy problem for the Navier-Stokes equations of nonisentropic flow with discontinuous initial data. J. Differential Equations 95, 33–73 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Hoff, D., Zumbrun, K.: Pointwise Green's function bounds for multi-dimensional scalar viscous shock fronts. J. Differential Equations. 183, 368–408 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Howard, P., Zumbrun, K.: Pointwise estimates and stability for dispersive-diffusive shock waves. Arch. Rational Mech. Anal. 155, 85–169 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Humpherys, J., Zumbrun, K.: Spectral stability of small amplitude shock profiles for dissipative symmetric hyperbolic–parabolic systems. Z. Angew. Math. Phys. 53, 20–34 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kapitula, T.: Stability of weak shocks in λ–ω systems. Indiana Univ. Math. J. 40, 1193–12 (1991)

    MathSciNet  MATH  Google Scholar 

  28. Kapitula, T.: On the stability of travelling waves in weighted L spaces. J. Differential Equations 112, 179–215 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kapitula, T., Sandstede, B.: Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Phys. D 124, 58–103 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Kawashima, S.: Systems of a hyperbolic–parabolic composite type, with applications to the equations of magnetohydrodynamics. Thesis, Kyoto University, 1983

  31. Kato, T.: Perturbation theory for linear operators. Springer-Verlag. Berlin Heidelberg, 1985

  32. Ladyzenskaja, O.A., Ural'tseva, N.N.: On linear and quasij-linear equations and systems of elliptic and parabolic types. 1963 Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963) 146–150 Acad. Sci. USSR Siberian Branch, Moscow

  33. Ladyzenskaja, O.A., Solonnikov, V.A., Ural'tseva, N.N.: Linear and quasi-linear equations of parabolic type. Translations of Math. Monographs 23, AMS, Providence, RI (1968)

  34. Levi, E.E.: Sulle equazioni lineari totalmente ellittiche alle derivate parziali. Rend. Circ. Mat. Palermo 24, 275–317 (1907)

    MATH  Google Scholar 

  35. Liu, T.P., Zumbrun, K.: Nonlinear stability of an undercompressive shock for complex Burgers equation. Commun. Math. Phys. 168, 163–186 (1995)

    MathSciNet  Google Scholar 

  36. Liu, T.P., Zumbrun, K.: On nonlinear stability of general undercompressive viscous shock waves. Commun. Math. Phys. 174, 319–345 (1995)

    MathSciNet  MATH  Google Scholar 

  37. Liu, T.-P., Zeng, Y.: Large time behavior of solutions for general quasilinear hyperbolic–parabolic systems of conservation laws. Mem. Amar. Math. Soc. 125, (1997)

  38. Lyng, G.: One dimensional stability of detonation waves. Doctoral thesis, Indiana University, 2002

  39. Lyng, G., Zumbrun, K.: On the one-dimensional stability of detonation waves. Preprint (2003)

  40. Majda, A.: The stability of multi-dimensional shock fronts-a new problem for linear hyperbolic equations. Mem. Amer. Math. Soc. 275 (1983)

  41. Majda, A.: The existence of multi-dimensional shock fronts. Mem. Amer. Math. Soc. 281 (1983)

  42. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Springer-Verlag, New York, viii+ 159, pp. 1984

  43. Majda, A., Pego, R.: Stable viscosity matrices for systems of conservation laws. J. Differential Equations. 56, 229–262 (1985)

    MathSciNet  MATH  Google Scholar 

  44. Mascia, C., Zumbrun, K.: Pointwise Green's function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51, 773–904 (2002)

    Google Scholar 

  45. Mascia, C., Zumbrun, K.: Stability of viscous shock profiles for symmetrizable hyperbolic–parabolic systems. Preprint (2001), available: math.indiana.edu/home/kzumbrun

  46. Mascia, C., Zumbrun, K.: Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Preprint (2003)

  47. Métivier, G., Zumbrun, K.: Large Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems. Preprint, 2002

  48. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences, 44, Springer-Verlag, New York-Berlin, viii+279 pp. ISBN: 0-387-90845-5 (1983)

  49. Pego, R.L.: Stable viscosities and shock profiles for systems of conservation laws. Trans. Amer. Math. Soc. 282, 749–763 (1984)

    MathSciNet  MATH  Google Scholar 

  50. Pego, R.L.: Phase transitions in one-dimensional nonlinear viscoelasticity: admissibility and stability. Arch. Rational Mech. Anal. 97, 353–394 (1987)

    MathSciNet  MATH  Google Scholar 

  51. Plaza, R., Zumbrun, K.: An Evans function approach to spectral stability of small-amplitude viscous shock profiles. Preprint, 2002

  52. Sattinger, D.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355 (1976)

    Google Scholar 

  53. Serre, D., Zumbrun, K.: Boundary layer stability in real-vanishing viscosity limit. Commun. Math. Phys. (2001)

  54. Strikwerda, J.C.: Finite difference schemes and partial differential equations. Chapman and Hall, New York, 1989, xii+ 386 pp.

  55. Yong, W.-A.: Basic aspects of hyperbolic relaxation systems. Advances in the theory of shock waves, 259–305. Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston. Boston, MA, 2001

  56. Zeng, Y.: L 1 asymptotic behavior of compressible, isentropic, viscous 1-d flow. Commun. Pure Appl. Math. 47, 1053–1092 (1994)

    MathSciNet  MATH  Google Scholar 

  57. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana. Univ. Math. J. 47, 741–871 (1998)

    Google Scholar 

  58. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana. Univ. Math. J. 51, 1017–1021 (2002)

    Google Scholar 

  59. Zumbrun, K.: Stability of viscous shock waves. Lecture Notes, Indiana University, 1998

  60. Zumbrun, K.: Refined wave-tracking and nonlinear stability of viscous lax shocks. Methods Appl. Anal. 7, 747–768 (2000)

    MathSciNet  MATH  Google Scholar 

  61. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. Advances in the theory of shock waves, 307–516. Progr. Nonlinear Differential Equations Appl., 47, Birkhäuser Boston, Boston, MA, 2001

  62. Zumbrun, K.: Stability index for relaxation and real viscosity systems. Unpublished note (revised appendix for ref. [Z.3]), (2002) available math.indiana.edu/home/kzumbrun

  63. Zumbrun, K., Serre, D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corrado Mascia.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascia, C., Zumbrun, K. Pointwise Green Function Bounds for Shock Profiles of Systems with Real Viscosity. Arch. Rational Mech. Anal. 169, 177–263 (2003). https://doi.org/10.1007/s00205-003-0258-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-003-0258-5

Keywords

Navigation