Skip to main content
Log in

One-Dimensional Stability of Viscous Strong Detonation Waves

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

Building on Evans-function techniques developed to study the stability of viscous shocks, we examine the stability of strong-detonation-wave solutions of the Navier-Stokes equations for reacting gas. The primary result, following [1, 17], is the calculation of a stability index whose sign determines a necessary condition for spectral stability. We show that for an ideal gas this index can be evaluated in the Zeldovich-von Neumann-Döring limit of vanishing dissipative effects. Moreover, when the heat of reaction is sufficiently small, we prove that strong detonations are spectrally stable provided that the underlying shock is stable. Finally, for completeness, we include the calculation of the stability index for a viscous shock solution of the Navier-Stokes equations for a nonreacting gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J., Gardner, R., Jones, C.: A topological invariant arising in the stability analysis of travelling waves. J. Reine Agnew Math. 410, 167–212 (1990)

    MATH  Google Scholar 

  2. Benzoni-Gavage, S., Serre, D., Zumbrun, K.: Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32, 929–962 (electronic) (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burlioux, A., Majda, A.J., Roytburd, V.: Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343 (1991)

    Google Scholar 

  4. Campbell, C., Woodhead, D.W.: The Ignition of gases by an explosion wave, I:Carbon monoxide and carbon mixtures. J. Chem. Soc. 129, 3010–3021 (1926)

    Article  Google Scholar 

  5. Campbell, C., Woodhead, D.W.: Striated photographic records of explosion waves. J. Chem. Soc. 130, 1572–1578 (1927)

    Article  Google Scholar 

  6. Chen G.-Q., Hoff D., Trivisa K.: On the Navier-Stokes equations for exothermically reacting compressible fluid. Acta Mathematicae Applicatae Sinica (English Series) 18, 15–36 (2002)

    Article  Google Scholar 

  7. Coppel, W. A.: Stability and Asymptotic Behavior of Differential Equations. Boston Mass.: D. C. Heath and Co., 1965

  8. Courant, R., Friedrichs, K.: Supersonic Flow and Shock Waves. New York: Springer-Verlag, 1976

  9. Evans, J.: Nerve axon equations, I: Linear approximations. Indiana Univ. Math. J. 21, 877–855 (1972)

    MATH  Google Scholar 

  10. Evans, J.: Nerve axon equations, II: Stability at rest. Indiana Univ. Math. J. 22, 75–90 (1972)

    MATH  Google Scholar 

  11. Evans, J.: Nerve axon equations, III: Stability of the nerve impulse. Indiana Univ. Math. J. 22, 577–593 (1972)

    MATH  Google Scholar 

  12. Evans, J.: Nerve axon equations, IV: The stable and unstable impulse. Indiana Univ. Math. J. 24, 1169–1190 (1975)

    MATH  Google Scholar 

  13. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differential Equations 31, 53–98 (1979)

    MathSciNet  MATH  Google Scholar 

  14. Fickett, W., Davis, W.: Detonation: Theory and Experiment. Berkeley: University of California Press, 1979

  15. Fickett, W., Wood,W.W.: Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903–916 (1966)

    Google Scholar 

  16. Freistühler, H., Szmolyan, P.: Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal. 26, 112–128 (1995)

    MathSciNet  Google Scholar 

  17. Gardner, R., Zumbrun, K.: The gap lemma and geometric criteria for the instability of viscous shocks. Commun Pure Appl. Math. 51, 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  18. Gasser, I. Szmolyan, P.: A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24, 968–986 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Gasser, I. Szmolyan, P.: Detonation and deflagration waves with multistep reaction schemes. SIAM J. Appl. Math. 55, 175–191 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Gel’fand, I.M.: Some problems in the theory of quasilinear equations. Amer. Math. Soc. Transl. (2) 29, 295–381 (1963)

    Google Scholar 

  21. Gilbarg, D.: The existence and limit behavior of the one-dimensional shock layer. Amer. J. Math. 73, 256–274 (1951)

    MathSciNet  MATH  Google Scholar 

  22. Gordon, W.E., Mooradian, A.J., Harper, S.A.: Limit and spine effects in hydrogen-oxygen detonations. In: Seventh Symposium (International) on Combustion. Academic Press, 1959, pp. 752–759

  23. Henry, D.: Geometric theory of semilinear parabolic equations. Berlin: Springer-Verlag, 1981

  24. Hesaaraki, M., Razani, A.: Detonative travelling waves for combustions. Applicable Anal. 77, 405–418 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Humpherys, J.: On Spectral Stability of strong shocks for Isentropic Gas Dynamics. Preprint

  26. Jenssen, H.K., Lyng, G.: Evaluation of the Lopatinski determinant for multi-dimensional Euler equations, 2002, appendix to [69]

  27. Kapitula, T., Sandstede B.: Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Phys. D 124, 58–103 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Kasimov, A., Stewart, D.S.: Spinning instability of gaseous detonations. J. Fluid Mech. 466, 179–203 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kato, T.: Perturbation Theory for Linear Operators Berlin: Springer-Verlag, 1995 Reprint of the 1980 edition

  30. Kawashima, S.: Systems of a hyperbolic-parabolic type with applications to the equations of magnetohydrodynamics. PhD thesis, Kyoto University, 1983

  31. Lee, H.I., Stewart, D.S.: Calculation of linear detonation instability: One-dimensional instability of plane detonation. J. Fluid Mech. 216, 103–132 (1990)

    MATH  Google Scholar 

  32. Li, D., Liu, T.-P., Tan, D.: Stability of strong detonation waves to combustion model. J. Math. Anal. Appl. 201, 516–531 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, T.: On the Riemann problem for a combustion model. SIAM J. Math. Anal. 24, 59–75 (1993)

    MathSciNet  MATH  Google Scholar 

  34. Li, T.: On the initiation problem for a combustion model. J. Differential Equations 112, 351–373 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, T.: Rigorous asymptotic stability of a Chapman-Jouget detonation wave in the limit of small resolved heat release. Combustion Theory and Modeling 1, 259–270 (1997)

    Article  Google Scholar 

  36. Li, T.: Stability of strong detonation waves and rates of convergence. Elec. J. Diff. Eqns. 1998, 1–77 (1998)

    Google Scholar 

  37. Li, T.: Stability and instability of detonation waves. In: Hyperbolic Problems: Theory Applications & Numerics; Seventh International Conference in Zürich, 1999

  38. Liu, T.-P., Ying, L.: Nonlinear stability of strong detonations for a viscous combustion model. SIAM J. Math. Analy. 26, 519–528 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Liu, T.-P., Yu, S.: Nonlinear stability of weak detonation waves for a combustion model. Commun. Math. Phys. 204, 551–586 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lyng, G.: One Dimensional Stability of Detonation Waves. PhD thesis, Indiana University, 2002

  41. Lyng, G., Zumbrun, K.: A stability index for detonation waves in majda’s model for reacting flow. Physica D, to appear

  42. Majda, A.: A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41, 70–93 (1981)

    MathSciNet  MATH  Google Scholar 

  43. Majda, A.: Compressible Fluid Flows and Systems of Conservation Laws. New York: Springer-Verlag, 1983

  44. Majda, A., Pego R.L.: Stable viscosity matrices for systems of conservation laws. J. Differential Equations 56, 229–262 (1985)

    MathSciNet  MATH  Google Scholar 

  45. Manson, N., Brochet, C., Brossard, J., Pujol, Y.: Vibratory phenomena and instability of self-sustained detonations in gases. In: Ninth Symposium (International) on Combustion, pp. 461–469 Academic Press, 1963

  46. Mascia, C., Zumbrun, K.: Pointwise Green’s function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51, 773–904 (2002)

    MathSciNet  MATH  Google Scholar 

  47. Mascia, C., Zumbrun, K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169, 177–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mascia, C., Zumbrun, K.: Stability of viscous shock Profiles for dissipative symmetric hyperbolic-parabolic systems. Comm. Pure. Appl. Math., to appear

  49. Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of real materials. Rev. Modern Phys. 61, 75–130 (1999)

    Article  Google Scholar 

  50. Mundy, G., Ubbelhode, F.R.S., Wood, I.F.: Fluctuating detonations in gases. Proc. Roy. Soc. A 306, 171–178 (1968)

    Google Scholar 

  51. Roquejoffre, J., Vila. J.: Stability of ZND detonation waves in the majda combustion model. Asymptotic Anal. 18, 329–348 (1998)

    MathSciNet  MATH  Google Scholar 

  52. Serre, D.: La transition vers l’instabilité pour les ondes de choc multi-dimensionnelles. Trans. Amer. Math. Soc. 353, 5071–5093 (2001) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  53. Serre, D., Zumbrun, K.: Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys. 202, 547–569 (2001)

    Google Scholar 

  54. Shizuta, Y., Kawashima, S.: Systems of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 435–457 (1984)

    Google Scholar 

  55. Short, M., Stewart, D.S.: Low-frequency two-dimensional linear instability of plane detonation. J. Fluid Mech. 340, 249–295 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Short, M., Stewart, D.S.: Cellular detonation stability. I. A normal-mode linear analysis. J. Fluid Mech. 368, 229–262 (1998)

    Article  MATH  Google Scholar 

  57. Short, M., Stewart, D.S.: The multi-dimensional stability of weak-heat-release detonations. J. Fluid Mech. 382, 109–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Szepessy, A.: Dynamics and stability of a weak detonation wave. Commun. Math. Phys. 202, 547–569 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  59. Szmolyan, P.: Transversal heteroclinic and homoclinic orbits in singular perturbation problems. J. Differential Equations 92, 252–281 (1991)

    MathSciNet  MATH  Google Scholar 

  60. Tan, D., Tesei, A.: Nonlinear stability of strong detonation waves in gas dynamical combustion. Nonlinearity 10, 355–376 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  61. Weyl, H.: Shock waves in arbitrary fluids. Commun. Pure Appl. Math. 2, 103–122 (1949)

    MathSciNet  MATH  Google Scholar 

  62. Williams, F.: Combustion Theory. Menlo Park: Benjamin/Cummings, 1985

  63. Zumbrun, K.: Stability of viscous shock waves. Lecture Notes Indiana University, 1998

  64. Zumbrun, K.: Multidimensional stability of shock waves. Lecture Notes, Indiana University, 2000

  65. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the Theory of Shock Waves, number 47 in Progress in Nonlinear Differential Equations and Applications, pp. 307–516, Birkhauser, 2001

  66. Zumbrun, K., Howard, P.: Pointwise semigroup methods and the stability of viscous shocks. Indiana Univ. Math. J. 47, 741–871 (1998)

    MathSciNet  MATH  Google Scholar 

  67. Zumbrun, K., Serre, D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–999 (1999)

    MathSciNet  MATH  Google Scholar 

  68. Zumbrun, K.: Stability index for relaxation and real viscosity systems, 2002. available at math.indiana.edu/home/kzumbrun (corrected appendix of [65])

  69. Zumbrun, K.: Stability of Large-Amplitude shock waves of compressible Navier-Stokes Equations. Handbook Math. Fluid Dyn. IV Elsevier, to appear

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Lyng.

Additional information

Communicated by S.S. Antman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyng, G., Zumbrun, K. One-Dimensional Stability of Viscous Strong Detonation Waves. Arch. Rational Mech. Anal. 173, 213–277 (2004). https://doi.org/10.1007/s00205-004-0317-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0317-6

Keywords

Navigation