Skip to main content
Log in

Fast Diffusion to Self-Similarity: Complete Spectrum, Long-Time Asymptotics, and Numerology

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract.

The complete spectrum is determined for the operator on the Sobolev space W1,2ρ(Rn) formed by closing the smooth functions of compact support with respect to the norm Here the Barenblatt profile ρ is the stationary attractor of the rescaled diffusion equation in the fast, supercritical regime m the same diffusion dynamics represent the steepest descent down an entropy E(u) on probability measures with respect to the Wasserstein distance d2. Formally, the operator H=Hess ρ E is the Hessian of this entropy at its minimum ρ, so the spectral gap Hα:=2−n(1−m) found below suggests the sharp rate of asymptotic convergence: from any centered initial data 0≦u(0,x) ∈ L1(Rn) with second moments. This bound improves various results in the literature, and suggests the conjecture that the self-similar solution u(t,x)=R(t)nρ(x/R(t)) is always slowest to converge. The higher eigenfunctions – which are polynomials with hypergeometric radial parts – and the presence of continuous spectrum yield additional insight into the relations between symmetries of Rn and the flow. Thus the rate of convergence can be improved if we are willing to replace the distance to ρ with the distance to its nearest mass-preserving dilation (or still better, affine image). The strange numerology of the spectrum is explained in terms of the number of moments of ρ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications Inc., New York, 1992

  2. Adams, R.A.: Sobolev Spaces. Academic Press, New York, 1975

  3. Angenent, S.B.: Large time asymptotics for the porous medium equation. In: Nonlinear diffusion equations and their equilibrium states I, volume 12 of Math. Sci. Res. Inst. Publ., Springer, New York, 1988, pp. 21–34

  4. Bakry, D., Emery, M.: Diffusions hypercontractives. In: Sém. Proba. XIX, number 1123 in Lecture Notes in Math., Springer, New York, 1985, pp. 177–206

  5. Barenblatt, G.I.: On some unsteady motions of a liquid or gas in a porous medium. Akad. Nauk. SSSR. Prikl. Mat. Mekh. 16, 67–78 (1952)

    MATH  Google Scholar 

  6. Bénilan, P., Crandall, M.G.: The continuous dependence on ϕ of solutions of u t -Δϕ(u)=0. Indiana Univ. Math. J. 30, 161–177 (1981)

    MathSciNet  Google Scholar 

  7. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété riemannienne, volume 194 of Lecture Notes in Mathematics. Springer, New York, 1971

  8. Boussinesq, J.: Recherches théoriques sur l’écoulement des nappes d’eau infiltrés dans le sol et sur le débit de sources. Comptes Rendus Acad. Sci. / J. Math. Pures Appl. 10, 5–78 (1903/04)

    Google Scholar 

  9. Carlson, J.M., Chayes, J.T., Grannan, E.R., Swindle, G.H.: Self-organized criticality and singular diffusion. Phys. Rev. Lett. 65, 2547–2550 (1980)

    Article  Google Scholar 

  10. Carrillo, J.A., Toscani, G.: Asymptotic L1-decay of solutions of the porous medium equation to self-similarity. Indiana Univ. Math. J. 49, 113–141 (2000)

    Google Scholar 

  11. Carrillo, J.A., Vázquez, J.L.: Fine asymptotics for fast diffusion equations. Comm. Partial Differential Equations 28, 1023–1056 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carrillo, J.A., McCann, R.J., Villani, C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Submitted 2004

  13. Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatsh. Math. 133, 1–82 (2001)

    Google Scholar 

  14. Carrillo, J.A., Lederman, C., Markowich, P.A., Toscani, G.: Poincaré inequalities for linearizations of very fast diffusion equations. Nonlinearity 15, 565–580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chayes, J.T., Osher, S.J., Ralston, J.V.: On singular diffusion equations with applications to self-organized criticality. Comm. Pure Appl. Math. 46, 1363–1377 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Denzler, J., McCann, R.J.: Phase transitions and symmetry breaking in singular diffusion. Proc. Natl. Acad. Sci. USA 100, 6922–6925 (2003)

    Article  MathSciNet  Google Scholar 

  17. Dolbeault, J., del Pino, M.: Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81, 847–875 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feller, W.: An Introduction to Probability Theory and Its Applications II. 2nd ed. John Wiley & Sons, New York, 1972

  19. Friedman, A., Kamin, S.: The asymptotic behaviour of a gas in an n-dimensional porous medium. Trans. Am. Math. Soc. 262, 551–563 (1980)

    MathSciNet  MATH  Google Scholar 

  20. Galaktionov, V.A., Peletier, L.A., Vazquez, J.L.: Asymptotics of the fast-diffusion equation with critical exponent. SIAM J. Math. Anal. 31, 1157–1174 (2000)

    Google Scholar 

  21. Givens, C.R., Shortt, R.M.: A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31, 231–240 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herrero, M.A., Pierre, M.: The Cauchy problem for u t um when 0<m<1. Trans. AMS 291, 145–158 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Kufner, A.: Weighted Sobolev Spaces. 2nd ed. John Wiley & Sons, New York, 1985

  24. Lederman, C., Markowich, P.A.: On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass. Comm. Partial Differential Equations 28, 301–332 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lytchak, A., Sturm, K.-Th., von Renesse, M.-K.: Work in progress. Private communication 2004

  26. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Number 51 in Mathematical Surveys and Monographs. AMS, Providence, 1997

  27. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128, 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York, 1937

  29. Newman, W.: A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. I. J. Math. Phys. 25, 3120–3123 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nirenberg, L., Walker, H.F.: The null spaces of elliptic partial differential operators in Rn. J. Math. Anal. Appl. 42, 271–301 (1975)

    Article  MATH  Google Scholar 

  31. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26, 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pattle, R.E.: Diffusion from an instantaneous point source with concentration dependent coefficient. Quart. J. Mech. Appl. Math. 12, 407–409 (1959)

    Google Scholar 

  34. del Pino, M., Saez, M.: On the extinction profile for solutions of u t = Δu(N-2)/(N+2). Indiana Univ. Math. J. 50, 612–628 (2001)

    Google Scholar 

  35. Pliś, A.: A smooth linear elliptic differential equation without any solutions in a sphere. Comm. Pure Appl. Math. 14, 599–617 (1961)

    Google Scholar 

  36. Poole, E.G.C.: Introduction to the Theory of Linear Differential Equations. Dover, New York, 1960

  37. Ralston, J.: A Lyapunov functional for the evolution of solutions to the porous medium equation to self-similarity. II. J. Math. Phys. 25, 3124–3127 (1984)

    Article  MATH  Google Scholar 

  38. Riesz, F., Sz.-Nagy, B.: Functional Analysis. Dover, New York, 1990

  39. Rudin, W.: Functional Analysis. 2nd ed. McGraw-Hill, New York, 1991

  40. Stalker, J.: Complex Analysis: Fundamentals of the Classical Theory of Functions. Birkhäuser, Boston, 1998

  41. Vázquez, J.L.: Asymptotic behaviour for the porous medium equation in the whole space. Dedicated to Philippe Bénilan. J. Evolution Equations 3, 67–118 (2003)

    Google Scholar 

  42. Vazquez, J.L., Esteban, J.R., Rodriguez, A.: The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane. Advances in Differential Equations 1, 21–50 (1996)

    Google Scholar 

  43. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics #58, American Mathematical Society, Providence, 2003

  44. Zel’dovich, Ya.B., Barenblatt, G.I.: The asymptotic properties of self-modelling solutions of the nonstationary gas filtration equations. Sov. Phys. Doklady 3, 44–47 (1958)

    Google Scholar 

  45. Zel’dovich, Ya.B., Kompaneets, A.S.: Theory of heat transfer with temperature dependent thermal conductivity. In: Collection in Honour of the 70th Birthday of Academician A.F. Ioffe, Izdvo. Akad. Nauk. SSSR, Moscow, 1950, pp. 61–71

  46. Zel’dovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena II. Academic Press, New York, 1966

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Denzler.

Additional information

Communicated by F. Otto

Dedicated to Elliott H. Lieb on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denzler, J., McCann, R. Fast Diffusion to Self-Similarity: Complete Spectrum, Long-Time Asymptotics, and Numerology. Arch. Rational Mech. Anal. 175, 301–342 (2005). https://doi.org/10.1007/s00205-004-0336-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-004-0336-3

Keywords

Navigation