Skip to main content
Log in

Low Mach Number Limit of the Full Navier-Stokes Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The low Mach number limit for classical solutions of the full Navier-Stokes equations is here studied. The combined effects of large temperature variations and thermal conduction are taken into account. In particular, we consider general initial data. The equations lead to a singular problem, depending on a small scaling parameter, whose linearized system is not uniformly well-posed. Yet, it is proved that solutions exist and they are uniformly bounded for a time interval which is independent of the Mach number Ma ∈ (0,1], the Reynolds number Re ∈ [1,+∞] and the Péclet number Pe ∈ [1,+∞]. Based on uniform estimates in Sobolev spaces, and using a theorem of G. Métivier & S. Schochet [30], we next prove that the penalized terms converge strongly to zero. This allows us to rigorously justify, at least in the whole space case, the well-known computations given in the introduction of P.-L. Lions' book [26].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alazard, T.: Incompressible limit of the nonisentropic Euler equations with solid wall boundary conditions. Adv. in Differential Equations 10, 19–44 (2005)

    MathSciNet  Google Scholar 

  2. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  3. Bresch, D., Desjardins, B., Grenier, E., Lin, C.-K.: Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109, 125–149 (2002)

    Article  MathSciNet  Google Scholar 

  4. Bresch, D., Desjardins, B., Lin, C.-K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Partial Differential Equations 28, 843–868 (2003)

    Article  MathSciNet  Google Scholar 

  5. Cheverry, C., Guès, O., Métivier, G.: Oscillations fortes sur un champ linéairement dégénéré. Ann. Sci. École Norm. Sup. 36, 691–745 (2003)

    Article  MathSciNet  Google Scholar 

  6. Danchin, R.: Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)

    Article  MathSciNet  Google Scholar 

  8. Danchin, R.: Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124, 1153–1219 (2002)

    Article  MathSciNet  Google Scholar 

  9. Danchin, R.: Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Ann. Sci. École Norm. Sup. 35, 27–75 (2002)

    Article  MathSciNet  Google Scholar 

  10. Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455, 2271–2279 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Desjardins, B., Grenier, E., Lions, P.-L., Masmoudi, N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999)

    Article  MathSciNet  Google Scholar 

  12. Desjardins, B., Lin, C.-K.: A survey of the compressible Navier-Stokes equations. Taiwanese J. Math. 3, 123–137 (1999)

    Article  MathSciNet  Google Scholar 

  13. Gallagher, I.: Résultats récents sur la limite incompressible. Séminaire Bourbaki 926, 2003–2004

  14. Grenier, E.: Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76, 477–498 (1997)

    Article  MathSciNet  Google Scholar 

  15. van der Heul, D.R., Vuik, C., Wesseling, P.: A conservative pressure-correction method for the Euler and ideal MHD equations at all speeds. ICFD Conference on Numerical Methods for Fluid Dynamics, Part II (Oxford, 2001). Internat. J. Numer. Methods Fluids 40, 521–529 (2002)

  16. Hoff, D.: The zero-Mach limit of compressible flows. Comm. Math. Phys. 192, 543–554 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Hörmander, L.: Lectures on nonlinear hyperbolic differential equations. Springer-Verlag, 1997

  18. Isozaki, H.: Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381, 1–36 (1987)

    MathSciNet  Google Scholar 

  19. Isozaki, H.: Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow. Osaka J. Math. 26, 399–410 (1989)

    Google Scholar 

  20. Kawashima, S., Shizuta, Y.: On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws. Tohoku Math. J. 40, 449–464 (1988)

    Article  MathSciNet  Google Scholar 

  21. Kawashima, S., Yong, W.-A.: Dissipative Structure and Entropy for Hyperbolic Systems of Balance Laws. Arch. Ration. Mech. Anal. 174, 345–364 (2004)

    Article  MathSciNet  Google Scholar 

  22. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34, 481–524 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  23. Klainerman, S., Majda, A.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35, 629–651 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  24. Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121, 213–237 (1995)

    ADS  Google Scholar 

  25. Lannes, D.: Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators. Preprint Université Bordeaux I (2004)

  26. Lions, P.-L.: Mathematical topics in fluid mechanics Vol. 1, Incompressible models. In: Oxford Lecture Series in Mathematics and its Applications 3. Oxford Science Publications, 1996

  27. Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. In: Applied Mathematical Sciences 53. Springer-Verlag, 1984

  29. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  Google Scholar 

  30. Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158, 61–90 (2001)

    Article  MathSciNet  Google Scholar 

  31. Métivier, G., Schochet, S.: Limite incompressible des équations d'Euler non isentropiques. Séminaire: Équations aux Dérivées Partielles, Exp. No. X, 17 (2001)

  32. Métivier, G., Schochet, S.: Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187, 106–183 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. Meyer, Y.: Remarques sur un théorème de J.-M. Bony. Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980). Rend. Circ. Mat. Palermo (2), 1–20 (1981)

  34. Munz, C.-D.: Computational fluid dynamics and aeroacoustics for low Mach number flow. In: Hyperbolic partial differential equations (Hamburg, 2001), 269–320. Vieweg, Braunschweig, 2002

  35. Schneider, T., Botta, N., Geratz, K.J., Klein, R.: Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows. J. Comput. Phys. 155, 248–286 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  36. Schochet, S.: The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm. Math. Phys. 104, 49–75 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  37. Schochet, S.: Fast singular limits of hyperbolic PDE's. J. Differential Equations 114, 476–512 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  38. Secchi, P.: On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech. 2, 107–125 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  39. Secchi, P.: On slightly compressible ideal flow in the half-plane. Arch. Ration. Mech. Anal. 161, 231–255 (2002)

    Article  MathSciNet  Google Scholar 

  40. Taylor, M.E.: Pseudodifferential operators and nonlinear PDE. In: Progress in Mathematics 100. Birkhäuser Boston Inc., 1991

  41. Ukai, S.: The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26, 323–331 (1986)

    Article  MathSciNet  Google Scholar 

  42. Vatsa, V.N., Turkel, E.: Choice of Variables and Preconditioning for Time Dependent Problems. AIAA, 16th Computational Fluid Dynamics Conference (Orlando), 2003

  43. Zeytounian, R.K.: Theory and applications of nonviscous fluid flows. Springer-Verlag, Berlin, 2002

  44. Zeytounian, R.K.: Theory and applications of viscous fluid flows. Springer-Verlag, Berlin, 2004

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Alazard.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alazard, T. Low Mach Number Limit of the Full Navier-Stokes Equations. Arch. Rational Mech. Anal. 180, 1–73 (2006). https://doi.org/10.1007/s00205-005-0393-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0393-2

Keywords

Navigation