Skip to main content
Log in

Quasistatic Evolution Problems for Linearly Elastic–Perfectly Plastic Materials

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The problem of quasistatic evolution in small strain associative elastoplasticity is studied in the framework of the variational theory for rate-independent processes. Existence of solutions is proved through the use of incremental variational problems in spaces of functions with bounded deformation. This approach provides a new approximation result for the solutions of the quasistatic evolution problem, which are shown to be absolutely continuous in time. Four equivalent formulations of the problem in rate form are derived. A strong formulation of the flow rule is obtained by introducing a precise definition of the stress on the singular set of the plastic strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anzellotti, G.: On the extremal stress and displacement in Hencky plasticity. Duke Math. J. 51, 133–147 (1984)

    Article  MathSciNet  Google Scholar 

  2. Anzellotti, G., Giaquinta, M.: On the existence of the field of stresses and displacements for an elasto-perfectly plastic body in static equilibrium. J. Math. Pures Appl. 61, 219–244 (1982)

    MATH  MathSciNet  Google Scholar 

  3. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. 2nd rev. ed. Reidel, Dordrecht, 1986

  4. Brezis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam-London; American Elsevier, New York, 1973

  5. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 458, 299–317 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Dal Maso, G., Francfort, G.A., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eve, R.A., Reddy, B.D., Rockafellar, R.T.: An internal variable theory of elastoplasticity based on the maximum plastic work inequality. Quart. Appl. Math. 48, 59–83 (1990)

    MATH  MathSciNet  Google Scholar 

  8. Giusti, E.: Minimal surfaces and functions of bounded variation. Birkhäuser, Boston, 1984

  9. Goffman, C., Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  10. Han, W., Reddy, B.D.: Plasticity. Mathematical Theory and Numerical Analysis. Springer Verlag, Berlin, 1999

  11. Hill, R.: The mathematical Theory of Plasticity. Clarendon Press, Oxford, 1950

  12. Johnson, C.: Existence Theorems for Plasticity Problems. J. Math. Pures Appl. 55, 431–444 (1976)

    MATH  MathSciNet  Google Scholar 

  13. Kohn, R.V., Temam, R.: Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10, 1–35 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lubliner, J.: Plasticity Theory. Macmillan New York, 1990

  15. Mainik, A., Mielke, A.: Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations 22, 73–99 (2005)

    MATH  MathSciNet  Google Scholar 

  16. Martin, J.B.: Plasticity. Fundamentals and General Results. MIT Press, Cambridge, 1975

  17. Matthies, H., Strang, G., Christiansen, E.: The saddle point of a differential program. Energy Methods in Finite Element Analysis, R. Glowinski, E. Rodin, O.C. Zienkiewicz, (ed.) Wiley, New York, pp. 309–318, 1979

  18. Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Internat. J. Numer. Methods Engrg. 55, 1285–1322 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mielke, A.: Analysis of energetic models for rate-independent materials. Proceedings of the International Congress of Mathematicians, Vol. III, Higher Ed. Press, Beijing, pp. 817–828, 2002

  20. Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodynamics 15, 351–382 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Mielke, A., Roubíček, T.: A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1, 571–597 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mielke, A., Theil, F.: A mathematical model for rate-independent phase transformations with hysteresis. Proceedings of the Workshop on ``Models of Continuum Mechanics in Analysis and Engineering'', H-D. Alber, R. Balean, and R. Farwig, (eds), Shaker-Verlag, pp. 117–129, 1999.

  23. Mielke, A., Theil, F., Levitas, V.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162, 137–177 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ortiz, M., Martin, J.B.: Symmetry preserving return mapping algorithm and incrementally extremal paths: a unification of concepts. Internat. J. Numer. Methods Engrg. 28, 1839–1853 (1989)

    Article  MATH  Google Scholar 

  25. Ortiz, M., Stanier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Engrg. 171, 419–444 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, 1970

  27. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York, 1966

  28. Suquet, P.: Sur les équations de la plasticité: existence et regularité des solutions. J. Mécanique 20, 3–39 (1981)

    MATH  MathSciNet  Google Scholar 

  29. Temam, R.: Mathematical problems in plasticity. Gauthier-Villars, Paris, 1985. Translation of Problèmes mathématiques en plasticité. Gauthier-Villars, Paris, 1983

  30. Temam, R., Strang, G.: Duality and relaxation in the variational problem of plasticity. J. Mécanique 19, 493–527 (1980)

    MATH  MathSciNet  Google Scholar 

  31. Visintin, A.: Strong convergence results related to strict convexity. Comm. Partial Differential Equations 9, 439–466 (1984)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Dal Maso.

Additional information

Communicated by A. Mielke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maso, G., DeSimone, A. & Mora, . Quasistatic Evolution Problems for Linearly Elastic–Perfectly Plastic Materials. Arch. Rational Mech. Anal. 180, 237–291 (2006). https://doi.org/10.1007/s00205-005-0407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0407-0

Keywords

Navigation