Skip to main content
Log in

Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

It is well known that the Boltzmann equation is related to the Euler and Navier-Stokes equations in the field of gas dynamics. The relation is either for small Knudsen number, or, for dissipative waves in the time-asymptotic sense. In this paper, we show that rarefaction waves for the Boltzmann equation are time-asymptotic stable and tend to the rarefaction waves for the Euler and Navier-Stokes equations. Our main tool is the combination of techniques for viscous conservation laws and the energy method based on micro-macro decomposition of the Boltzmann equation. The expansion nature of the rarefaction waves and the suitable microscopic version of the H-theorem are essential elements of our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkeryd, L., Nouri, A.: On the Milne problem and the hydrodynamic limit for a steady Boltzmann equation model. J. Statist. Phy. 99, 993–1019 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bardos, C., Caflisch, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Comm. Pure Appl. Math. 49, 323–452 (1986)

    Article  Google Scholar 

  3. Bardos, C., Golse, F.: Differents aspects de la notion d'entropie au niveau de l'equation de Boltzmann et de Navier-Stokes. C. R. Acad. Sci. Paris Ser. I Math. 299 (7), 225–228 (1984)

    Google Scholar 

  4. Bardos, C., Ukai, S.: The classical incompressible Navier-Stokes limit of the Boltzmann equation. Math. Models Methods Appl. Sci. 1, 235–257 (1991)

    Article  MathSciNet  Google Scholar 

  5. Boltzmann, L.: (translated by Stephen G. Brush), Lectures on Gas Theory. Dover Publications, Inc. New York, 1964

  6. Caflisch, C.: The fluid dynamic limit of the nonlinear Boltzmann equation. Comm. Pure Appl. Math. 33, 651–666 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. Caflish, R.E., Nicolaenko, B.: Shock profile solutions of the Boltzmann equation. Comm. Math. Phys. 86, 161–194 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  8. Carleman, T.: Sur la théorie de l'équation intégrodifférentielle de Boltzmann. Acta Mathematica 60, 91–142 (1932)

    Article  MathSciNet  Google Scholar 

  9. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer-Verlag, New York, 1988

  10. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer-Verlag, Berlin, 1994

  11. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edition. Cambridge University Press, 1990

  12. Coron, F., Golse, F., Sulem, C.: A classification of well-posed kinetic layer problems. Comm. Pure Appl. Math. 41, 409–435 (1988)

    Article  MathSciNet  Google Scholar 

  13. Courant, R., Friedrichs, K.O.: Supersonic Flows and Shock Waves. Wiley-Interscience: New York, 1948

  14. Esposito, R., Pulvirenti, M.: From particles to fluid. In: S. Friedlander and D. Serre, editors, Handbooks of Mathematical Fluid Dynamics, Vol. III, Elsevier, 2004

  15. Golse, F., Perthame, B., Sulem, C.: On a boundary layer problem for the nonlinear Boltzmann equation. Arch. Ration. Mech. Anal. 103, 81–96 (1986)

    Article  Google Scholar 

  16. Goodman, J.: Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95, 325–344 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  17. Grad, H.: Asymptotic Theory of the Boltzmann Equation II. In: J.A. Laurmann, editor, Rarefied Gas Dynamics, Vol. 1, Academic Press, New York, 26–59, 1963

  18. Guo, Y.: The Boltzmann equation in the whole space. Indiana University Mathematics Journal 53, 1081–1094 (2004)

    Article  MathSciNet  Google Scholar 

  19. Hilbert, D.: Grundzüge einer Allgemeinen Theorie der Linearen Integralgleichungen. Teubner, Leipzig, Chap. 22, 1953

  20. Kawashima, S., Matsumura, A.: Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm. Math. Phys. 101, 97–127 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kawashima, S., Matsumura, A., Nishida, T.: On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier-Stokes equation. Comm. Math. Phys. 70, 97–124 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lachowicz, M.: On the initial layer and the existence theorem for the nonlinear Boltzmann equation. Math. Methods Appl. Sci. 9, 342–366 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lax, P.D.: Hyperbolic system of conservation laws, II. Comm. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  Google Scholar 

  24. Liu, T.-P.: Decay to N-waves of solutions of general systems of nonlinear hyperbolic conservation laws. Comm. Pure Appl. Math. 30, 586–611 (1977)

    MathSciNet  Google Scholar 

  25. Liu, T.-P.: Linear and nonlinear large-time behaviors of solutions of hyperbolic conservation laws. Comm. Pure Appl. Math. 30, 767–796 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu, T.-P.: Nonlinear Stability of Shock Waves for Viscous Conservation Laws. Mem. Amer. Math. Soc. 56, 1–108 (1985)

    Google Scholar 

  27. Liu, T.-P., Xin, Z.-P.: Nonlinear stability of rarefaction waves for compressible Navier-Stokes equations. Comm. Math. Phys. 118, 451–465 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  28. Liu, T.-P., Yang, T., Yu, S.-H.: Energy method for the Boltzmann equation. Physica D 188, 178–192 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. Liu, T.-P., Yu, S.-H.: Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Commun. Math. Phys. 246, 133–179 (2004)

    Article  ADS  Google Scholar 

  30. Matsumura, A.: Asymptotic toward rarefaction wave for solutions of the Broadwell model of a discrete velocity gas. Japan J. Appl. Math. 4, 489–502 (1987)

    Article  MathSciNet  Google Scholar 

  31. Matsumura, A., Nishihara, K.: On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math. 2, 17–25 (1985)

    Article  MathSciNet  Google Scholar 

  32. Matsumura, A., Nishihara, K.: Asymptotics toward the rarefaction waves of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math. 3, 3–13 (1985)

    Google Scholar 

  33. Maxwell, J.C.: The Scientific Papers of James Clerk Maxwell, Cambridge University Press, 1890: (a) On the dynamical theory of gases, Vol. II, p. 26. (b) On stresses in rarefied gases arising from inequalities of temperature, Vol. II, p. 681

  34. Nicolaenko, B.: Shock wave solutions of the Boltzmann equation as a nonlinear bifurcation problem from the essential spectrum. In: Theories cinetiques classiques et relativistes (Colloq. Internat. Centre Nat. Recherche Sci., No. 236, Paris, 1974), pp. 127–150. Centre Nat. Recherche Sci., Paris, 1975

  35. Nishida, T.: Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Comm. Math. Phys. 61, 119–148 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  36. Nishihara, K., Yang, T., Zhao, H.-J.: Nonlinear stability of strong rarefaction waves for compressible Navier-Stokes equations. SIAM J. Math. Anal. 35, 1561–1597 (2004)

    Article  MathSciNet  Google Scholar 

  37. Smoller, J.: Shock Waves and Reaction-diffusion Equations. Springer, New York, 1994

  38. Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhauser, Boston, 2002

  39. Ukai, S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Japan Acad. 50, 179–184 (1974)

    Article  MathSciNet  Google Scholar 

  40. Ukai, S.: private communications

  41. Yu, S.-H.: Hydrodynamic limits with shock waves of the Boltzmann equations. Commun. Pure Appl. Math. 58, 397–431 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai-Ping Liu.

Additional information

Communicated by the Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, TP., Yang, T., Yu, SH. et al. Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation. Arch Rational Mech Anal 181, 333–371 (2006). https://doi.org/10.1007/s00205-005-0414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-005-0414-1

Keywords

Navigation