Skip to main content
Log in

Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Using a nonstandard version of the principle of virtual power, we develop general balance equations and boundary conditions for second-grade materials. Our results apply to both solids and fluids as they are independent of constitutive equations. As an application of our results, we discuss flows of incompressible fluids at small-length scales. In addition to giving a generalization of the Navier–Stokes equations involving higher-order spatial derivatives, our theory provides conditions on free and fixed boundaries. The free boundary conditions involve the curvature of the free surface; among the conditions for a fixed boundary are generalized adherence and slip conditions, each of which involves a material length scale. We reconsider the classical problem of plane Poiseuille flow for generalized adherence and slip conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antman S.S., Osborn J.E. (1979). The principle of virtual work and integral laws of motion. Arch. Ration. Mech. Anal. 69:231–262

    Article  MathSciNet  MATH  Google Scholar 

  2. Beebe D.J., Mensing G.A., Walker G.M. (2002). Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4:261–286

    Article  Google Scholar 

  3. Bitsanis I., Somers S.A., Davis H.T., Tirrell M. (1990). Microscopic dynamics of flow in molecularly narrow pores. J. Chem. Phys. 93:3427–3431

    Article  ADS  Google Scholar 

  4. Cermelli P., Fried E., Gurtin M.E. (2005). Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid. Mech. 544:339–351

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Cosserat, E., Cosserat F. (1909). Théorie des Corps Déformables. Hermann, Paris

    Google Scholar 

  6. D’Alembert, J. Le Rond. (1743). Traité de Dynamique. David L’aine, Paris

  7. DiCarlo A., Gurtin M.E., Podio-Guidugli P. (1992). A regularized equation for anisotropic motion-by-curvature. SIAM J. Appl. Math. 52:1111–1119

    Article  MathSciNet  Google Scholar 

  8. Erickson D., Li D.Q. (2004). Integrated microfluidic devices. Anal. Chim. Acta 507:11–26

    Article  Google Scholar 

  9. Gad-El-Hak M. (1999). The fluid mechanics of microdevices—The Freeman scholar lecture. J. Fluids Eng-T. ASME 121:5–33

    Google Scholar 

  10. Gardeniers H., Van den Berg A. (2004). Micro- and nanofluidic devices for environmental and biomedical applications. Int. J. Environ. Anal. Chem. 84:809–819

    Article  Google Scholar 

  11. Gurtin M.E. (1981). An Introduction to Continuum Mechanics. Academic Press, New York

    MATH  Google Scholar 

  12. Gurtin M.E. (2001). A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 84:809–819

    Google Scholar 

  13. Herring, C. Surface tension as a motivation for sintering. The Physics of Powder Metallurgy (ed.W. E. Kingston), McGraw-Hill, New York, 1951

  14. Hetsroni G., Mosyak A., Pogrebnyak E., Yarin L.P. (2005). Fluid flow in micro-channels. Int. J. Heat Mass Tran. 48:1982–1998

    Article  Google Scholar 

  15. Hsieh S.-S., Lin C.-Y., Huang C.-F., Tsai H.-H. (2004). Liquid flow in a micro-channel. J. Micromech. Microeng. 14:436–445

    Article  ADS  Google Scholar 

  16. Jensen K. (1998). Chemical kinetics: Smaller, faster chemistry. Nature 393:735–737

    Article  ADS  Google Scholar 

  17. Kandlikar S.G., Joshi S., Tian S.R. (2003). Effect of surface roughness on heat transfer and fluid flow characteristics at low Reynolds numbers in small diameter tubes. Heat Transfer Eng. 24:4–16

    Article  Google Scholar 

  18. Koplik J., Banavar J.R. (1995). Continuum deductions from molecular hydrodynamics. Annu. Rev. Fluid Mech. 27:257–292

    Article  ADS  Google Scholar 

  19. Koplik J., Banavar J.R., Willemsen J.F. (1988). Molecular dynamics of Pioseuille flow and moving contact lines. Phys. Rev. Lett. 60:1282–1285

    Article  ADS  Google Scholar 

  20. Li Z.X., Du D.X., Guo Z.Y. (2003). Experimental study on flow characteristics of liquid in circular microtubes. Microscale Therm. Eng. 7:253–265

    Google Scholar 

  21. Mala G.M., Li D. (1999). Flow characteristics of water in microtubes. Int. J. Heat Fluid Fl 20:142–148

    Article  Google Scholar 

  22. Mi X.-B., Chwang A.T. (2003). Molecular dynamics simulations of nanochannel flows at low Reynolds numbers. Molecules 8:193–206

    Article  Google Scholar 

  23. Mindlin R.D. (1965). Second gradient of strain and surface-tension in linear elasticity. Internat. J. Solids Structures 1:417–438

    Article  Google Scholar 

  24. Mindlin R.D., Eshel N.N. (1968). On first strain-gradient theories in linear elasticity. Internat. J. Solids Structures 4: 109–124

    Article  MATH  Google Scholar 

  25. Mine N., Viovy J.-L. (2004). Microfluidics and biological applications: the stakes and trends. C. R. Physique 5:565–575

    Article  ADS  Google Scholar 

  26. Okamura H., Heyes D.M. (2004). Comparisons between molecular dynamics and hydrodynamics treatment of nonstationary thermal processes in a liquid. Phys. Rev. E 70:061206

    Article  ADS  Google Scholar 

  27. Onsager L. (1931). Reciprocal relations in irreversible processes. Phys. Rev. 37:405–426

    Article  ADS  MATH  Google Scholar 

  28. Peng X.F., Peterson G.P. (1996). Convective heat transfer and friction for water flow in microchannel structures. Int. J. Heat Mass Trans. 39:2599–2608

    Article  Google Scholar 

  29. Pfund D., Rector D., Shekarriz A., Popescu A., Welty J. (2000). Pressure drop measurements in a microchannel. AICHE J. 46:1496–1507

    Article  Google Scholar 

  30. Phares D.J., Smedley G.T. (2004). A study of laminar flow of polar liquids through circular microtubes. Phys. Fluids. 16:1267–1272

    Article  ADS  Google Scholar 

  31. Podio-Guidugli P. (1997). Inertia and invariance. Ann. Mat. Pura Appl. (4) 172:103–124

    Article  MathSciNet  MATH  Google Scholar 

  32. Podio-Guidugli P. Contact interactions, stress, and material symmetry. Theoret. Appl. Mech. 28–29, 271–276 (2002)

    Google Scholar 

  33. Qu W., Mala G.M., Li D. (2000). Pressure driven water flows in trapezoidal silicon microchannels. Int. J. Heat Mass Trans. 43:353–364

    Article  MATH  Google Scholar 

  34. Rastelli A., von Känel H., Spencer B.J., Tersoff J. (2003). Prepyramid–to–pyramid transition of SiGe islands on Si(001). Phys. Rev. B 68:115301

    Article  ADS  Google Scholar 

  35. Sharp K.V., Adrian R.A. (2004). Transition from turbulent to laminar flow in liquid filled mircotubes. Exp. Fluids 36:741–747

    Article  Google Scholar 

  36. Siegel M., Miksis M.J., Voorhees P.W. (2004). Evolution of material voids for highly anisotropic surface energy. J. Mech. Phys. Solids 52:1319–1353

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. Stone H.A., Kim S. (2001). Microfluidics: Basic issues, applications and challenges. AICHE J. 47:1250–1254

    Article  Google Scholar 

  38. Stone H.A., Stroock A.D., Ajdari A. (2004). Engineering flows in small devices: Microfluidics towards a lab-on-a-chip. Annu. Rev. Fluid Mech. 36:381–411

    Article  ADS  Google Scholar 

  39. Tegenfeldt J.O., Prinz C., Cao H., Huang R.L., Austin R.H., Chou S.Y., Cox E.C., Sturm J.C. (2004). Micro-and nanofluidics for DNA analysis. Anal. Bioanal. Chem. 378:1678–1692

    Article  Google Scholar 

  40. Toupin R.A. (1962). Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11:385–414

    Article  MathSciNet  MATH  Google Scholar 

  41. Toupin R.A. (1964). Theory of elasticity with couple-stresse. Arch. Ration. Mech. Anal. 17:85–112

    Article  MathSciNet  MATH  Google Scholar 

  42. Travis K.P., Gubbins K.E. (2000). Poiseuille flow of Lennard–Jones fluids in narrow slit pores. J. Chem. Phys. 112:1984–1994

    Article  ADS  Google Scholar 

  43. Travis K.P., Todd B.D., Evans D.J. (1997). Departure from Navier–Stokes hydrodynamics in confined liquids. Phys. Rev. E 55:4288–4295

    Article  ADS  Google Scholar 

  44. Verpoorte E., De Rooij N.F. (2003). Microfluidics meets MEMS. P IEEE 91:930–953

    Article  Google Scholar 

  45. Voigt W. (1887). Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abh. Ges. Wiss. Göttingen 34:53–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliot Fried.

Additional information

Communicated by S.S. Antman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fried, E., Gurtin, M.E. Tractions, Balances, and Boundary Conditions for Nonsimple Materials with Application to Liquid Flow at Small-Length Scales. Arch Rational Mech Anal 182, 513–554 (2006). https://doi.org/10.1007/s00205-006-0015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-006-0015-7

Keywords

Navigation