Skip to main content
Log in

The Optimal Partial Transport Problem

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Given two densities f and g, we consider the problem of transporting a fraction \({m \in [0,\min\{\|f\|_{L^1},\|g\|_{L^1}\}]}\) of the mass of f onto g minimizing a transportation cost. If the cost per unit of mass is given by |xy|2, we will see that uniqueness of solutions holds for \({m \in [\|f\wedge g\|_{L^1},\min\{\|f\|_{L^1},\|g\|_{L^1}\}]}\) . This extends the result of Caffarelli and McCann in Ann Math (in print), where the authors consider two densities with disjoint supports. The free boundaries of the active regions are shown to be (n − 1)-rectifiable (provided the supports of f and g have Lipschitz boundaries), and under some weak regularity assumptions on the geometry of the supports they are also locally semiconvex. Moreover, assuming f and g supported on two bounded strictly convex sets \({{\Omega,\Lambda \subset \mathbb {R}^n}}\) , and bounded away from zero and infinity on their respective supports, \({C^{0,\alpha}_{\rm loc}}\) regularity of the optimal transport map and local C 1 regularity of the free boundaries away from \({{\Omega\cap \Lambda}}\) are shown. Finally, the optimal transport map extends to a global homeomorphism between the active regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez O., Cardaliaguet P., Monneau R.: Existence and uniqueness for dislocation dynamics with positive velocity. Interf. Free Bound. 7(4), 415–434 (2005)

    Article  MATH  Google Scholar 

  2. Alberti G., Ambrosio L.: A geometrical approach to monotone functions in \({\mathbb{R}^n}\). Math. Z. 230(2), 259–316 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, 2000

  4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zurich. Birkhauser, Basel, 2005

  5. Brenier Y.: Polar decomposition and increasing rearrangement of vector fields. C. R. Acad. Sci. Paris Sér. I Math. 305(19), 805–808 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L.: The regularity of mappings with a convex potential. J. Am. Math. Soc. 5(1), 99–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli, L., McCann, R.J.: Free boundaries in optimal transport and Monge–Ampère obstacle problems. Ann. of Math. (in print)

  9. Cordero-Erasquin D., McCann R.J., Schmuckenschlager M.: Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dellacherie, C., Meyer, P.-A.: Probabilities and potential. North-Holland Mathematics Studies. 29, North-Holland, Amsterdam/New York, 1978

  11. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. Stud. Adv. Math. . CRC Press, Boca Raton (1992)

    Google Scholar 

  12. Fathi, A., Figalli, A.: Optimal transportation on non-compact manifolds. Israel J. Math. (to appear)

  13. Figalli A.: Existence, Uniqueness, and Regularity of Optimal Transport Maps. SIAM J. Math. Anal. 39(1), 126–137 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. McCann R.J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2), 309–323 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. McCann R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. McCann R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Villani, C.: Optimal transport, old and new. Notes from the Saint-Flour 2005 Summer School. Grundlehren der mathematischen Wissenschaften (To appear). Preliminary version available at http://www.umpa.ens-lyon.fr/~cvillani

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Figalli.

Additional information

Communicated by L. Ambrosio

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figalli, A. The Optimal Partial Transport Problem. Arch Rational Mech Anal 195, 533–560 (2010). https://doi.org/10.1007/s00205-008-0212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0212-7

Keywords

Navigation