Skip to main content
Log in

Optimal Decay Rate of the Compressible Navier–Stokes–Poisson System in \({\mathbb {R}^3}\)

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The compressible Navier–Stokes–Poisson (NSP) system is considered in \({\mathbb {R}^3}\) in the present paper, and the influences of the electric field of the internal electrostatic potential force governed by the self-consistent Poisson equation on the qualitative behaviors of solutions is analyzed. It is observed that the rotating effect of electric field affects the dispersion of fluids and reduces the time decay rate of solutions. Indeed, we show that the density of the NSP system converges to its equilibrium state at the same L 2-rate \({(1+t)^{-\frac {3}{4}}}\) or L -rate (1 + t)−3/2 respectively as the compressible Navier–Stokes system, but the momentum of the NSP system decays at the L 2-rate \({(1+t)^{-\frac {1}{4}}}\) or L -rate (1 + t)−1 respectively, which is slower than the L 2-rate \({(1+t)^{-\frac {3}{4}}}\) or L -rate (1 + t)−3/2 for compressible Navier–Stokes system [Duan et al., in Math Models Methods Appl Sci 17:737–758, 2007; Liu and Wang, in Comm Math Phys 196:145–173, 1998; Matsumura and Nishida, in J Math Kyoto Univ 20:67–104, 1980] and the L -rate (1 + t)p with \({p \in (1, 3/2)}\) for irrotational Euler–Poisson system [Guo, in Comm Math Phys 195:249–265, 1998]. These convergence rates are shown to be optimal for the compressible NSP system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deckelnick K.: Decay estimates for the compressible Navier-Stokes equations in unbounded domains. Math. Z. 209, 115–130 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Deckelnick K.: L 2-decay for the compressible Navier-Stokes equations in unbounded domains. Comm. Partial Differ. Equ. 18, 1445–1476 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ducomet B., Feireisl E., Petzeltova H., S kraba I.S.: Global in time weak solution for compressible barotropic self-gravitating fluids. Discrete Contin. Dyn. Syst. Ser-A 11, 113–130 (2004)

    Article  MATH  Google Scholar 

  4. Ducomet B.: A remark about global existence for the Navier-Stokes-Poisson system. Appl. Math. Lett. 12, 31–37 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Donatelli D.: Local and global existence for the coupled Navier-Stokes-Poisson problem. Quart. Appl. Math. 61, 345–361 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Duan R.-J., Ukai S., Yang T., Zhao H.-J.: Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duan R.-J., Liu H., Ukai S., Yang T.: Optimal L p-L q convergence rates for the compressible Navier-Stokes equations with potential force. J. Differ. Equ. 238, 220–233 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guo Y.: Smooth irrotational fows in the large to the Euler-Poisson system. Comm. Math. Phys. 195, 249–265 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Hoff D., Zumbrun K.: Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603–676 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Hoff D., Zumbrun K.: Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z. Angew. Math. Phys. 48, 597–614 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kagei Y., Kobayashi T.: On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in R 3. Arch. Rational Mech. Anal. 165, 89–159 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Kagei Y., Kobayashi T.: Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space. Arch. Rational Mech. Anal. 177, 231–330 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Kagei Y., Kawashima S.: Stability of planar stationary solutions to the compressible Navier-Stokes equation on the half space. Comm. Math. Phys. 266, 401–430 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Kawashima S.: Large-time behavior of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. Roy. Soc. Edinburgh 106, 169–194 (1987)

    MATH  MathSciNet  Google Scholar 

  15. Kawashima S., Nishibata S., Zhu P.: Asymptotic stability of the stationary solution to the compressible Navier–Stokes equations in the half space. Comm. Math. Phys. 240, 483–500 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  16. Kobayashi T.: Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in R 3. J. Differ. Equ. 184, 587–619 (2002)

    Article  MATH  Google Scholar 

  17. Kobayashi T., Shibata Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in R 3. Comm. Math. Phys. 200, 621–659 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Liu T.-P., Wang W.-K.: The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions. Comm. Math. Phys. 196, 145–173 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Liu T.-P., Zeng Y.: Large time behavior of solutions of general quasilinear hyperbolic-parabolic systems of conservation laws. A. M. S. Memoirs. 599, 1–45 (1997)

    Google Scholar 

  20. Li D.L.: The Green’s function of the Navier-Stokes equations for gas dynamics in R 3. Comm. Math. Phys. 257, 579–619 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Matsumura A., Nishida T.: The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser-A 55, 337–342 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Matsumura A., Nishida T.: The initial value problem for the equation of motion of viscous and heat-conductive gases. J. Math. Kyoto. Univ. 20, 67–104 (1980)

    MATH  MathSciNet  Google Scholar 

  23. Matsumura A., Nishida T.: Initial boundary value problems for the equations of motion of compressible viscous and heat conductive fluids. Comm. Math. Phys. 89, 445–464 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Markowich P.A., Ringhofer C.A., Schmeiser C.: Semiconductor Equations. Springer-Verlag, New York (1990)

    MATH  Google Scholar 

  25. Ponce G.: Global existence of small solution to a class of nonlinear evolution equations. Nonlinear Anal. 9, 339–418 (1985)

    Article  MathSciNet  Google Scholar 

  26. Solonnikov V.A.: Evolution free boundary problem for equations of motion of viscous compressible selfgravitating fluid. SAACM 3, 257–275 (1993)

    Google Scholar 

  27. Shibata Y., Tanaka K.: On the steady compressible viscous fluid and its stability with respect to initial disturbance. J. Math. Soc. Jpn. 55, 797–826 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shibata Y., Tanaka K.: Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid. preprint

  29. Ukai S., Yang T., Zhao H.-J.: Convergence rate for the compressible Navier-Stokes equations with external force. J. Hyperbolic Differ. Equ. 3, 561–574 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zeng Y.: L 1 Asymptotic behavior of compressible isentropic viscous 1-D flow. Comm. Pure Appl. Math. 47, 1053–1082 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhang Y.-H., Tan Z.: On the existence of solutions to the Navier-Stokes-Poisson equations of a two-dimensional compressible flow. Math. Methods Appl. Sci. 30, 305–329 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Liang Li.

Additional information

Communicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HL., Matsumura, A. & Zhang, G. Optimal Decay Rate of the Compressible Navier–Stokes–Poisson System in \({\mathbb {R}^3}\) . Arch Rational Mech Anal 196, 681–713 (2010). https://doi.org/10.1007/s00205-009-0255-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0255-4

Keywords

Navigation