Skip to main content
Log in

Minimizers of Caffarelli–Kohn–Nirenberg Inequalities with the Singularity on the Boundary

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Let Ω be a bounded smooth domain in \({{\bf R}^N, N\geqq 3}\), and \({D_a^{1,2}(\Omega)}\) be the completion of \({C_0^\infty(\Omega)}\) with respect to the norm:

$$||u||_a^2=\int_\Omega |x|^{-2a}|\nabla u|^2{d}x.$$

The Caffarelli–Kohn–Nirenberg inequalities state that there is a constant C > 0 such that

$$\begin{array}{ll}(\int_\Omega |x|^{-bq}|u|^q{d}x)^{\frac{2}{q}}\leqq C\int_\Omega|x|^{-2a}|\nabla u|^2{d}x \end{array}\quad\quad(0.1)$$

for \({u\in D_a^{1,2}(\Omega)}\) and

$$-\infty< a <\frac{N-2}{2},\quad 0\leqq b-a\leqq 1,\quad q=\frac{2N}{N-2+2(b-a)}.$$

We prove the best constant for (0.1)

$$S(a,b;\Omega)=\inf\limits_{u\in D_a^{1,2}\backslash\{0\}} \frac{\int_\Omega |x|^{-2a}|\nabla u|^2{d}x}{(\int_\Omega |x|^{-bq}|u|^q {d}x)^\frac{2}{q}}$$

is always achieved in \({D_a^{1,2}(\Omega)}\) provided that \({0\in\partial\Omega}\) and the mean curvature H(0) < 0, where a, b satisfies

$$(i)\,a<\, b<\,a+1\,{\rm and}\,N\geqq 3,{\,{\rm or}\,}(ii)\,b=a >0 {\,{\rm and}\, }N\geqq 4.$$

If a = 0 and 1 > b > 0, then the result was proved by Ghoussoub and Robert [12].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubin T.: Problemes isoperimetriques et espaces de Sobolev. J. Diff. Geom. 11(4), 573–598 (1979)

    MathSciNet  Google Scholar 

  2. Bartsch T., Peng S., Zhang Z.: Existence and non-existence of solutions to elliptic equations related to the Caffarelli–Kohn–Nirenberg inequalities. Calc. Var. Partial Differ. Equ. 30(1), 113–136 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brézis H., Nirenberg L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caffarelli L., Kohn R., Nirenberg L.: First order interpolation inequalities with weights. Composit. Math. 53(3), 259–275 (1984)

    MATH  MathSciNet  Google Scholar 

  5. Catrina F., Wang Z.Q.: On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions. Comm. Pure Appl. Math. 54(2), 229–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chou K.S., Chu C.W.: On the best constant for a weighted Sobolev–Hardy inequality. J. Lond. Math. Soc. 2(48(1), 137–151 (1993)

    Article  MathSciNet  Google Scholar 

  7. Chen C.C., Lin C.S.: A spherical Harnack inequality for singular solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30(3–4), 713–738 (2001, 2002)

    Google Scholar 

  8. Chen C.C., Lin C.S.: Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent. Duke Math. J. 78(2), 315–334 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen C.C., Lin C.S.: Estimates of the conformal scalar curvature equation via the method of moving planes. Comm. Pure Appl. Math. 50(10), 971–1017 (1997)

    Article  MathSciNet  Google Scholar 

  10. Chern J.L., Lin C.S.: The symmetry of least-energy solutions for seminliear elliptic equations. J. Differ. Equ. 187, 240–268 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ghoussoub N., Robert F.: Concentration estimates for Emden–Fowler equations with boundary singularities and critical growth. IMRP Int. Math. Res. Pap. 21867, 1–85 (2006)

    Article  MathSciNet  Google Scholar 

  12. Ghoussoub N., Robert F.: The effect of curvature on the best constant in the Hardy–Sobolev inequalities. Geom. Funct. Anal. 16(6), 1201–1245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lieb E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118(2), 349–374 (1983)

    Article  MathSciNet  Google Scholar 

  14. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in R n. Mathematical Analysis and Applications. Part A, pp. 369–402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York London, 1981

  15. Lin C.S.: Interpolation inequalities with weights. Comm. Partial Differ. Equ. 11(14), 1515–1538 (1986)

    Article  MATH  Google Scholar 

  16. Lin C.S.: Locating the peaks of solutions via the maximum principle. I. The Neumann problem. Comm. Pure Appl. Math. 54(9), 1065–1095 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin C.-S., Wang Z.Q.: Symmetry of extremal functions for the Caffarelli–Kohn– Nirenberg inequalities. Proc. Am. Math. Soc. 132(6), 1685–1691 (2004)

    Article  MATH  Google Scholar 

  18. Lin, C.S., Wang, Z.Q.: Least-energy solutions to a class of anisotropic elliptic equations in cones of \({{\rm R}^N_+}\). Preprint.

  19. Li Y.Y.: Prescribing scalar curvature on S n and related problems, part I. J. Differ. Equ. 120, 319–410 (1995)

    Article  MATH  Google Scholar 

  20. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Shou Lin.

Additional information

Communicated by P. Rabinowitz

Work partially supported by the National Science Council of Taiwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chern, JL., Lin, CS. Minimizers of Caffarelli–Kohn–Nirenberg Inequalities with the Singularity on the Boundary. Arch Rational Mech Anal 197, 401–432 (2010). https://doi.org/10.1007/s00205-009-0269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0269-y

Keywords

Navigation