Skip to main content
Log in

Existence and Stability of Noncharacteristic Boundary Layers for the Compressible Navier–Stokes and Viscous MHD Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

For a general class of hyperbolic–parabolic systems including the compressible Navier–Stokes and compressible MHD equations, we prove existence and stability of noncharacteristic viscous boundary layers for a variety of boundary conditions including classical Navier–Stokes boundary conditions. Our first main result, using the abstract framework established by the authors in the companion work (Gues et al. in J Differ Equ, 244, 309–387 (2008)), is to show that existence and stability of arbitrary amplitude exact boundary layer solutions follow from a uniform spectral stability condition on layer profiles that is expressible in terms of an Evans function (uniform Evans stability). Whenever this condition holds we give a rigorous description of the small viscosity limit as the solution of a hyperbolic problem with “residual” boundary conditions. Our second is to show that uniform Evans stability for small-amplitude layers is equivalent to Evans stability of the limiting constant layer, which in turn can be checked by a linear-algebraic computation. Finally, for a class of symmetric-dissipative systems including the physical examples mentioned above, we carry out energy estimates showing that constant (and thus small-amplitude) layers always satisfy uniform Evans stability. This yields existence of small-amplitude multi-dimensional boundary layers for the compressible Navier–Stokes and MHD equations. For both equations these appear to be the first such results in the compressible case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braslow, A.L.: A history of suction-type laminar-flow control with emphasis on flight research. NSA History Division, Monographs in aerospace history, no. 13 (1999)

  2. Bardos C., Rauch J.: Maximal positive boundary value problems as limits of singular perturbation problems. Trans. Am. Math. Soc. 270(2), 377–408 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benzoni-Gavage S., Serre D., Zumbrun K.: Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32(5), 929–962 (2001) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  4. Costanzino, N., Humpherys, J., Nguyen, T., Zumbrun, K.: Spectral stability of noncharacteristic boundary layers of isentropic Navier–Stokes equations. Preprint, 2007

  5. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D.C. Heath, Boston, 1965

  6. Chazarain J., Piriou A.: Introduction to the Theory of Linear Partial Differential Equations. North Holland, Amsterdam (1982)

    MATH  Google Scholar 

  7. Freistühler H., Szmolyan P.: Spectral stability of small shock waves. Arch. Ration. Mech. Anal. 164(4), 287–309 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Freistühler, H., Szmolyan, P.: Spectral stability of small-amplitude viscous shock waves in several dimensions. Preprint, 2007

  9. Grenier E., Guès O.: Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differ. Equ. 143, 110–146 (1998)

    Article  MATH  Google Scholar 

  10. Gues O., Metivier G., Williams M., Zumbrun K.: Existence and stability of multidimensional shock fronts in the vanishing viscosity limit. Arch. Ration. Mech. Anal. 175(2), 151–244 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gues O., Metivier G., Williams M., Zumbrun K.: Paper 4, Navier–Stokes regularization of multidimensional Euler shocks. Ann. Sci. École Norm. Sup. (4) 39(1), 75–175 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Gues O., Metivier G., Williams M., Zumbrun K.: Viscous boundary value problems for symmetric systems with variable multiplicities. J. Differ. Equ. 244, 309–387 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guès O., Métivier G., Williams M., Zumbrun K.: Nonclassical multidimensional viscous and inviscid shocks. Duke Math. J. 142, 1–110 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Grenier E., Rousset F.: Stability of one dimensional boundary layers by using Green’s functions. Comm. Pure Appl. Math. 54, 1343–1385 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gisclon M., Serre D.: Conditions aux limites pour un système strictement hyperbolique fournies par le schéma de Godunov. RAIRO Modél. Math. Anal. Numér. 31, 359–380 (1997)

    MATH  MathSciNet  Google Scholar 

  16. Gardner R., Zumbrun K.: The gap lemma and geometric criteria instability of viscous shock profiles. CPAM 51, 797–855 (1998)

    MathSciNet  Google Scholar 

  17. Humpherys, J., Lafitte, O., Zumbrun, K.: Stability of isentropic viscous shock profiles in the high-mach number limit. Preprint, 2007

  18. Humpherys, J., Lyng, G., Zumbrun, K.: Spectral stability of ideal-gas shock layers. Preprint, 2007

  19. Humpherys, J., Lyng, G., Zumbrun, K.: Multidimensional spectral stability of large-amplitude Navier–Stokes shocks, in preparation

  20. Iftimie, D., Sueur, F.: Viscous boundary layers for the Navier–Stokes equations with the Navier slip condition. Preprint, 2008

  21. Kreiss H.-O.: Initial boundary value problems for hyperbolic systems. Comm. Pure Appl. Math. 23, 277–298 (1970)

    Article  MathSciNet  Google Scholar 

  22. Kawashima S., Shizuta Y.: Systems of equations of hyperbolic–parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

    MATH  MathSciNet  Google Scholar 

  23. Kawashima S., Shizuta Y.: On the normal form of the symmetric hyperbolic–parabolic systems associated with the conservation laws. Tohoku Math. J. 40, 449–464 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kato T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995) (Reprint of the 1980 edition)

    MATH  Google Scholar 

  25. Kawashima S., Nishibata S., Zhu P.: Asymptotic stability of the stationary solution to the compressible Navier–Stokes equations in the half space. Comm. Math. Phys. 240(3), 483–500 (2003)

    MATH  MathSciNet  ADS  Google Scholar 

  26. Majda, A.: The Stability of Multidimensional Shock Fronts. Mem. Am. Math. Soc., no. 275. AMS, Providence, 1983

  27. Mascia C., Zumbrun K.: Stability of small-amplitude viscous shock profiles for dissipative hyperbolic–parabolic systems. Comm. Pure Appl. Math. 57(7), 841–876 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mascia C., Zumbrun K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169(3), 177–263 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Metivier G.: The Block Structure Condition for Symmetric Hyperbolic Problems. Bull. Lond. Math. Soc. 32, 689–702 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Metivier, G.: Stability of multidimensional shocks. In: Advances in the Theory of Shock waves, Progress in Nonlinear PDE, vol. 47. Birkhäuser, Boston, 2001

  31. Metivier G.: Small Viscosity and Boundary Layer Methods. Birkhäuser, Boston (2004)

    MATH  Google Scholar 

  32. Matsumura A., Nishihara K.: Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas. Comm. Math. Phys. 222(3), 449–474 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Majda A., Pego R.L.: Stable viscosity matrices for systems of conservation laws. J. Differ. Equ. 56, 229–262 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. Métivier, G., Zumbrun, K.: Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems. Memoirs AMS, 826 (2005)

  35. Métivier G., Zumbrun K.: Hyperbolic Boundary Value Problems for Symmetric Systems with Variable Multiplicities. J. Differ. Equ. 211, 61–134 (2005)

    Article  MATH  Google Scholar 

  36. Métivier G., Zumbrun K.: Symmetrizers and continuity of stable subspaces for parabolic–hyperbolic boundary value problems. Discret. Contin. Dyn. Syst. 11(1), 205–220 (2004)

    Article  MATH  Google Scholar 

  37. Nguyen, T., Zumbrun, K.: Long-time stability of large-amplitude noncharacteristic boundary layers for hyperbolic–parabolic systems. Preprint, 2008

  38. Plaza R., Zumbrun K.: An Evans function approach to spectral stability of small-amplitude shock profiles. Discret. Contin. Dyn. Syst. 10, 885–924 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Rauch J.: Symmetric positive systems with boundary characteristic of constant multiplicity. Trans. Am. Math. Soc. 291(1), 167–187 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rousset F.: Inviscid boundary conditions and stability of viscous boundary layers (English summary). Asymptot. Anal. 26(3–4), 285–306 (2001)

    MATH  MathSciNet  Google Scholar 

  41. Rousset F.: Stability of small amplitude boundary layers for mixed hyperbolic– parabolic systems. Trans. Am. Math. Soc. 355(7), 2991–3008 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Schlichting, H.: Boundary Layer Theory. Translated by J. Kestin, 4th edn. McGraw-Hill Series in Mechanical Engineering. McGraw-Hill, New York, (1960)

  43. Serre, D.: Systems of Conservation Laws 2. Translated by I. N. Sneddon. Cambridge University Press, Cambridge, 2000

  44. Sueur F.: A few remarks on a theorem by J. Rauch. Indiana Univ. Math. J. 54(4), 1107–1143 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Serre D., Zumbrun K.: Boundary layer stability in real vanishing-viscosity limit. Comm. Math. Phys. 221(2), 267–292 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Temam R., Wang X.: Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case. J. Differ. Equ. 179, 647–686 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  47. Yarahmadian, S., Zumbrun, K.: Pointwise Green function bounds and long-time stability of large-amplitude noncharacteristic boundary layers. Preprint, 2008

  48. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. In: Advances in the Theory of Shock Waves. Progress in Nonlinear PDE, vol. 47, pp. 304–516. Birkhäuser, Boston, 2001

  49. Zumbrun K.: Refined wave-tracking and nonlinear stability of viscous Lax shocks. Methods Appl. Anal. 7, 747–768 (2000)

    MATH  MathSciNet  Google Scholar 

  50. Zumbrun, K.: Stability of large-amplitude shock waves of compressible Navier–Stokes equations. Handbook of Fluid Mechanics III, (Eds. Friedlander, S. and Serre, D.) Elsevier/North Holland, Amsterdam, 2004

  51. Zumbrun K., Howard P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47, 741–871 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zumbrun K., Serre D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Williams.

Additional information

Communicated by C. M. Dafermos

Research of O. Gues was partially supported by European network HYKE, HPRN-CT-2002-00282. Research of G. Métivier was partially supported by European network HYKE, HPRN-CT-2002-00282. Research of M. Williams was partially supported by NSF grants number DMS-0070684 and DMS-0401252. K. Zumbrun thanks the Universities of Bordeaux I and Provence for their hospitality during visits in which this work was partially carried out. Research of K. Zumbrun was partially supported by NSF grants number DMS-0070765 and DMS-0300487.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guès, O., Métivier, G., Williams, M. et al. Existence and Stability of Noncharacteristic Boundary Layers for the Compressible Navier–Stokes and Viscous MHD Equations. Arch Rational Mech Anal 197, 1–87 (2010). https://doi.org/10.1007/s00205-009-0277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-009-0277-y

Keywords

Navigation