Skip to main content
Log in

Stability of Detonation Profiles in the ZND Limit

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Confirming a conjecture of Lyng–Raoofi–Texier–Zumbrun, we show that stability of strong detonation waves in the ZND, or small-viscosity, limit is equivalent to stability of the limiting ZND detonation together with stability of the viscous profile associated with the component Neumann shock. Moreover, on bounded frequencies the nonstable eigenvalues of the viscous detonation wave converge to those of the limiting ZND detonation, while on frequencies of order one over viscosity, they converge to one over viscosity times those of the associated viscous Neumann shock. This yields immediately a number of examples of instability and Hopf bifurcation of reacting Navier–Stokes detonations through the extensive numerical studies of ZND stability in the detonation literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abouseif G., Toong T.Y.: Theory of unstable one-dimensional detonations. Combust. Flame 45, 67–94 (1982)

    Article  Google Scholar 

  2. Alexander J., Gardner R., Jones C.K.R.T.: A topological invariant arising in the analysis of traveling waves. J. Reine Angew. Math. 410, 167–212 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Alpert R.L., Toong T.Y.: Periodicity in exothermic hypersonic flows about blunt projectiles. Acta Astron. 17, 538–560 (1972)

    Google Scholar 

  4. Barker, B., Humpherys, J., Zumbrun, K.: One-dimensional stability of parallel shock layers in isentropic magnetohydrodynamics, preprint (2009)

  5. Beck, M., Sandstede, B., Zumbrun, K.: Nonlinear stability of time-periodic shock waves. Arch. Ration. Mech. Anal. (to appear)

  6. Bourlioux A., Majda A.: Theoretical and numerical structure of unstable detonations. Proc. R. Soc. Lond. A 350, 29–68 (1995)

    ADS  MATH  Google Scholar 

  7. Bourlioux A., Majda A., Roytburd V.: Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Buckmaster J., Neves J.: One-dimensional detonation stability: the spectrum for infinite activation energy. Phys. Fluids 31(12), 3572–3576 (1988)

    Article  ADS  Google Scholar 

  9. Chen G.Q.: Global solutions to the compressible Navier-S-tokes equations for a reacting mixture. SIAM J. Math. Anal. 23(3), 609–634 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Clavin, P., He, L.: Stability and nonlinear dynamics of one-dimensional overdriven detonations in gases. J. Fluid Mech. 306 (1996)

  11. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D.C. Heath and Co., Boston, 1965

  12. Costanzino N., Humpherys J., Nguyen T., Zumbrun K.: Spectral stability of noncharacteristic isentropic Navier–Stokes boundary layers. Arch. Ration. Mech. Anal. 192(3), 537–587 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Costanzino N., Jenssen K., Lyng G., Williams M.: Existence and stability of curved multidimensional detonation fronts. Indiana Univ. Math. J. 56(3), 1405–1461 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves, xvi+464 pp. Springer, New York, 1976

  15. Erpenbeck J.J.: Stability of steady-state equilibrium detonations. Phys. Fluids 5, 604–614 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  16. Erpenbeck, J.J.: Stability of idealized one-reaction detonations. Phys. Fluids 7 (1964)

  17. Erpenbeck J.J.: Detonation stability for disturbances of small transverse wave length. Phys. Fluids 9, 1293–1306 (1966)

    Article  ADS  MATH  Google Scholar 

  18. Erpenbeck J.J.: Stability of step shocks. Phys. Fluids 5(10), 1181–1187 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Erpenbeck J.J.: Nonlinear theory of unstable one-dimensional detonations. Phys. Fluids 10(2), 274–289 (1967)

    Article  ADS  MATH  Google Scholar 

  20. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971/1972)

  21. Fickett, W., Davis, W.C.: Detonation, University of California Press, Berkeley, CA (1979): reissued as Detonation: Theory and experiment Dover, New York, 2000. ISBN 0-486-41456-6

  22. Fickett W.: Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903–916 (1966)

    Article  ADS  Google Scholar 

  23. Gardner R.: On the detonation of a combustible gas. Trans. Am. Math. Soc. 277(2), 431–468 (1983)

    Article  MATH  Google Scholar 

  24. Gardner R., Zumbrun K.: The Gap Lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51(7), 797–855 (1998)

    Article  MathSciNet  Google Scholar 

  25. Gasser I., Szmolyan P.: A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24, 968–986 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Gilbarg D.: The existence and limit behavior of the one-dimensional shock layer. Am. J. Math. 73, 256–274 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guès, O., Métivier, G., Williams, M., Zumbrun, K.: Existence and stability of noncharacteristic hyperbolic-parabolic boundary-layers. Arch. Ration. Mech. Anal. (to appear)

  28. Howard, P., Raoofi, M.: Pointwise asymptotic behavior of perturbed viscous shock profiles. Adv. Differ. Equ. 1031–1080(2006)

  29. Howard, P., Raoofi, M., Zumbrun, K.: Sharp pointwise bounds for perturbed viscous shock waves. J. Hyperbolic Differ. Equ. 297–373 (2006)

  30. Humpherys, J., Zumbrun, K.: Numerical stability analysis of detonation waves in ZND (in preparation)

  31. Humpherys J., Lafitte O., Zumbrun K.: Stability of isentropic Navier–Stokes shocks in the high-Mach number limit. Comm. Math. Phys. 293(1), 1–36 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Humpherys J., Lyng G., Zumbrun K.: Spectral stability of ideal-gas shock layers. Arch. Ration. Mech. Anal. 194(3), 1029–1079 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Humpherys, J., Lyng, G., Zumbrun, K.: Multidimensional spectral stability of large-amplitude Navier–Stokes shocks (in preparation)

  34. Jung, S., Yao, J.: Stability of ZND detonations for Majda’s model. Q. Appl. Math. (to appear)

  35. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1985)

    Google Scholar 

  36. Kawashima, S.: Systems of a Hyperbolic–Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics. Thesis, Kyoto University (1983)

  37. Jenssen H.K., Lyng G., Williams G.: Equivalence of low-frequency stability conditions for multidimensional detonations in three models of combustion. Indiana Univ. Math. J. 54, 1–64 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kasimov A.R., Stewart D.S.: Spinning instability of gaseous detonations. J. Fluid Mech. 466, 179–203 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Laurrouturou B.: Remarks on a model for combustion waves. Nonlinear Anal. Theory, Methods Appl. 9, 905–935 (1985)

    Article  Google Scholar 

  40. Lee H.I., Stewart D.S.: Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 216, 103–132 (1990)

    Article  ADS  MATH  Google Scholar 

  41. Lyng G., Zumbrun K.: One-dimensional stability of viscous strong detonation waves. Arch. Ration. Mech. Anal. 173(2), 213–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lyng G., Zumbrun K.: A stability index for detonation waves in Majda’s model for reacting flow. Phys. D 194, 1–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lyng G., Raoofi M., Texier B., Zumbrun K.: Pointwise Green Function Bounds and stability of combustion waves. J. Differ. Equ. 233, 654–698 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Majda A.: A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41, 70–91 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mascia C., Zumbrun K.: Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169(3), 177–263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mascia C., Zumbrun K.: Stability of large-amplitude viscous shock profiles of hyperbolic–parabolic systems. Arch. Ration. Mech. Anal. 172(1), 93–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Métivier, G.:Stability of multidimensional shocks. Advances in the theory of shock waves, pp. 25–103. Progr. Nonlinear Differential Equations Appl., vol. 47. Birkhäuser, Boston, 2001

  48. Métivier, G., Zumbrun, G.: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Am. Math. Soc. 175(826), vi+107 pp (2005)

    Google Scholar 

  49. Oh M., Zumbrun K.: Stability of periodic solutions of viscous conservation laws with viscosity. 1. Analysis of the Evans function. Arch. Ration. Mech. Anal. 166(2), 99–166 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Plaza R., Zumbrun K.: An Evans function approach to spectral stability of small-amplitude shock profiles. J. Disc. Cont. Dyn. Syst. 10, 885–924 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Roquejoffre J.-M., Vila J.-P.: Stability of ZND detonation waves in the Majda combustion model. Asymptot. Anal. 18(3–4), 329–348 (1998)

    MathSciNet  MATH  Google Scholar 

  52. Sattinger D.: On the stability of waves of nonlinear parabolic systems. Adv. Math. 22, 312–355 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  53. Raoofi M.: L p asymptotic behavior of perturbed viscous shock profiles. J. Hyperbolic Differ. Equ. 2(3), 595–644 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Raoofi, M., Zumbrun, K.: Stability of undercompressive viscous shock profiles of hyperbolic–parabolic systems. J. Differ. Equ., pp. 1539–1567 (2009)

  55. Sandstede B., Scheel A.: Hopf bifurcation from viscous shock waves. SIAM J. Math. Anal. 39, 2033–2052 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Short M.: An asymptotic derivation of the linear stability of the square-wave detonation using the Newtonian limit. Proc. R. Soc. Lond. A 452, 2203–2224 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Short M.: Multidimensional linear stability of a detonation wave at high activation energy. SIAM J. Appl. Math. 57(2), 307–326 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  58. Texier B., Zumbrun K.: Galloping instability of viscous shock waves. Phys. D. 237, 1553–1601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Texier B., Zumbrun K.: Hopf bifurcation of viscous shock waves in gas dynamics and MHD. Arch. Ration. Mech. Anal. 190, 107–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Texier, B., Zumbrun, K.: Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to time-periodic galloping solutions. preprint (2008)

  61. Williams, M.: Heteroclinic orbits with fast transitions: a new construction of detonation profiles. Indiana Univ. Math. J. (to appear)

  62. Zumbrun, K.: Multidimensional stability of planar viscous shock waves. Advances in the theory of shock waves, pp. 307–516. Progr. Nonlinear Differential Equations Appl., vol. 47. Birkhäuser Boston, 2001

  63. Zumbrun, K.: Stability of large-amplitude shock waves of compressible Navier–Stokes equations, with an appendix by Helge Kristian Jenssen and Gregory Lyng, in Handbook of mathematical fluid dynamics, vol. III, pp. 311–533. North-Holland, Amsterdam, 2004

  64. Zumbrun, K.: Stability of noncharacteristic boundary layers in the standing-shock limit. Trans. Am. Math. Soc. (to appear)

  65. Zumbrun, K.: Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD. Arch. Ration. Mech. Anal. (to appear)

  66. Zumbrun, K.: Planar stability criteria for viscous shock waves of systems with real viscosity. In: Hyperbolic Systems of Balance Laws, CIME School lectures notes, (Ed. Marcati P.), Lecture Note in Mathematics, vol. 1911. Springer, Berlin, 2004

  67. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Mathematics Journal V47, 741–871 (1998); Errata, Indiana Univ. Math. J. 51(4), 1017–1021 (2002)

  68. Zumbrun K., Serre D.: Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Zumbrun.

Additional information

Communicated by A. Bressan

Research of K. Zumbrun was partially supported under NSF grants no. DMS-0300487 and DMS-0801745.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zumbrun, K. Stability of Detonation Profiles in the ZND Limit. Arch Rational Mech Anal 200, 141–182 (2011). https://doi.org/10.1007/s00205-010-0342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0342-6

Keywords

Navigation