Skip to main content
Log in

Weakly Nonlinear-Dissipative Approximations of Hyperbolic–Parabolic Systems with Entropy

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Hyperbolic–parabolic systems have spatially homogenous stationary states. When the dissipation is weak, one can derive weakly nonlinear-dissipative approximations that govern perturbations of these constant states. These approximations are quadratically nonlinear. When the original system has an entropy, the approximation is formally dissipative in a natural Hilbert space. We show that when the approximation is strictly dissipative it has global weak solutions for all initial data in that Hilbert space. We also prove a weak-strong uniqueness theorem for it. In addition, we give a Kawashima type criterion for this approximation to be strictly dissipative. We apply the theory to the compressible Navier–Stokes system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin A., Mahalov A., Nicolaenko B.: Global regularity and integrability of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Asymptot. Anal 15, 103–150 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Babin A., Mahalov A., Nicolaenko B.: Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J 48, 1133–1176 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Babin A., Mahalov A., Nicolaenko B.: 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity. Indiana Univ. Math. J 50, 1–35 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Bianchini S., Hanouzet B., Natalini R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math 60(11), 1559–1622 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen G.-Q., Levermore C.D., Liu T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math 47, 787–830 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin P., Foias C.: Navier-Stokes Equations. Chicago Lectures in Mathematics. The University of Chicago Press, Chicago (1988)

    Google Scholar 

  7. Dafermos C.: Hyperbolic Conservation Laws in Continuum Physics, 2nd edn. Springer-Verlag, Berlin-Heidelberg (2005)

    Google Scholar 

  8. Danchin R.: Zero Mach number limit for compressible flows with periodic boundary conditions. Am. J. Math 124(6), 1153–1219 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desvillettes, L.: Hypocoercivity: the example of linear transport. In: Recent Trends in Partial Differential Equations (Eds. Cabré, X., Carrillo, J.A., and Vázquez, J.L.). Contemp. Math., Vol. 409, pp. 33–54. Amer. Math. Soc., Providence, 2006

  10. Doering C.R., Gibbon J.D., Levermore C.D.: Weak and strong solutions of the complex Ginzburg-Landau equation. Physica D 71, 285–318 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Embid P., Majda A.J.: Averaging over fast gravity waves for geophyical flows with arbitrary potenital vorticity. Commun. P.D.E 21, 619–658 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Embid P., Majda A.J.: Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn 87, 1–50 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. Friedrichs K.O., Lax P.D.: Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sci. USA 68, 1686–1688 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gallagher I.: Asymptotics of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differ. Equ 150, 363–384 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gallagher I.: Applications of Schochet’s methods to parabolic equations. Journal de Mathmatiques Pures et Appliques 77, 989–1054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Godunov S.K.: An interesting class of quasilinear systems. Dokl. Acad. Nauk SSSR 139, 521–523 (1961)

    MathSciNet  Google Scholar 

  17. Harten A., Lax P.D., Levermore C.D., Morokoff W.J.: Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal 35, 2117–2127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoff D., Zumbrun K.: Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J 44(2), 603–676 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoff D., Zumbrun K.: Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z. Angew. Math. Phys. 48(4), 597–614 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hörmander L.: Hypoelliptic second order differential operators. Acta Math 119, 147–171 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, N., Levermore, C.D.: Global existence and regularity of weakly compressible gas dynamics. Asymptot. Anal. (2010, to appear)

  22. Jiang, N., Levermore, C.D.: Weakly Compressible Stokes Dynamics of the Boltzmann Equation. Preprint, 2009

  23. Kawashima, S.: Systems of Hyperbolic-Parabolic Composite Type, with Application to the Equations of Magnetohydrodynamics. Doctoral Thesis, Kyoto University, 1984

  24. Shiazuta Y., Kawashima S.: System of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Tohoku Math. J 14, 249–275 (1985)

    Google Scholar 

  25. Kawashima S.: Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications. Proc. Roy. Soc. Edinburgh Sect. A 106(1–2), 169–194 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kawashima S.: Large-time behavior of solutions of the discrete Boltzmann equation. Commun. Math. Phys 109(4), 563–589 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  28. Leray J.: Sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions P.L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl 77, 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions P.L., Masmoudi N.: Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sr. I Math 329, 387–392 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Liu T.-P., Zeng Y.: Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Mem. Am. Math. Soc 125, 599 (1997)

    MathSciNet  Google Scholar 

  32. Masmoudi N.: Incompressible, inviscid limit of the compressible Navier-Stokes system. Ann. Inst. H. Poincaré 18, 199–224 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Puel M., Saint-Raymond L.: Quasineutral limit for the relativistic Vlasov-Maxwell system. Asymptot. Anal. 40, 303–352 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Ruggeri T., Serre D.: Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quart. Appl. Math 62(1), 163–179 (2004)

    MathSciNet  MATH  Google Scholar 

  35. Schochet S.: Fast singular limits of hyperbolic PDE’s. J. Differ. Equ 114, 476–512 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea, Providence, 2001

  37. Yong W.-A.: Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal 172(2), 247–266 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Villani C.: Hypocoercivity. Mem. Am. Math. Soc 202, 950 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David Levermore.

Additional information

Communicated by C.M. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, N., Levermore, C.D. Weakly Nonlinear-Dissipative Approximations of Hyperbolic–Parabolic Systems with Entropy. Arch Rational Mech Anal 201, 377–412 (2011). https://doi.org/10.1007/s00205-010-0361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0361-3

Keywords

Navigation