Skip to main content
Log in

Roughening Instability of Broken Extremals

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We derive a new general jump condition on a broken Weierstrass–Erdmann extremal of a vectorial variational problem. Such extremals, containing surfaces of gradient discontinuity, are ubiquitous in shape optimization and in the theory of elastic phase transformations. The new condition, which does not have a one dimensional analog, reflects the stationarity of the singular surface with respect to two-scale variations that are nontrivial generalizations of Weierstrass needles. The over-determinacy of the ensuing free boundary problem suggests that typical stable solutions must involve microstructures or chattering controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Allaire, G.: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, Vol. 146. Springer, New York, 2002

  2. Angheluta L., Jettestuen E., Mathiesen J.: Thermodynamics and roughening of solid–solid interfaces. Phys. Rev. E 79, 031601 (2009)

    Article  ADS  Google Scholar 

  3. Angheluta L., Jettestuen E., Mathiesen J., Renard F., Jamtveit B.: Stress-driven phase transformation and the roughening of solid–solid interfaces. Phys. Rev. Lett. 100, 096105 (2008)

    Article  ADS  Google Scholar 

  4. Asaro R.J., Tiller W.A.: Interface morphology development during stress corrosion cracking: Part i. Via surface diffusion. Metall. Mater. Trans. B 3(7), 1789–1796 (1972)

    Article  Google Scholar 

  5. Ball, W.A.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976/77)

    Google Scholar 

  6. Ball J.M., James R.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhattacharya, K.: Microstructure of Martensite. Oxford Series on Materials Modelling. Oxford University Press, Oxford, 2003

  8. Cherkaev A.: Variational Methods for Structural Optimization. Springer, New York (2000)

    Book  MATH  Google Scholar 

  9. Coral M.: On the necessary conditions for the minimum of a double integral. Duke Math. J. 3(4), 585–592 (1937)

    Article  MathSciNet  Google Scholar 

  10. Dacorogna B.: Direct Methods in the Calculus of Variations. Springer, New York (1989)

    MATH  Google Scholar 

  11. Erdmann G.: Ueber die unstetige Lösungen in der Variationsrechnung. J. Reine Angew. Math. 82, 21–30 (1877)

    Article  Google Scholar 

  12. Ericksen J.L.: Equilibrium of bars. J. Elast. 5(3–4), 191–201 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eschenauer H., Schumacher A.: Bubble method for topology and shape optimization of structures. Struct. Optim. 8, 42–51 (1994)

    Article  Google Scholar 

  14. Eshelby, J.D.: Energy relations and energy momentum tensor in continuum mechanics. Inelastic behavior of solids (Eds. M. Kanninen, W. Adler, A. Rosenfeld, R. Jaffee, R.). McGraw-Hill, New York, 77–114, 1970

  15. Filippov, A.F.: On certain questions in the theory of optimal control. Vestnik Moskovskogo Universiteta. Matematica i Astronomia, 2, 25–32 (1959). See also SIAM Journal on Control, 1, 76–84 (1962)

  16. Fosdick R.L., MacSithigh G.: Helical shear of an elastic, circular tube with a nonconvex stored energy. Arch. Rational Mech. Anal. 84(1), 31–53 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Freidin, A.B.: Crazing and shear bands in glassy polymers as layers of a new phase. Mech. Compos. Mater. 1, 1–7 (1989). Russian original is in Mekhanika Kompozitnih Materialov (1), 3–10 (1989)

  18. Freidin, A.B.: On the equilibrium of phases of an isotropic nonlinearly elastic material. Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. Estestv. Nauki, Special Issue:150–168, 172, (2000). Nonlinear problems in continuum mechanics (in Russian)

  19. Freidin A.B.: On new phase inclusions in elastic solids. Z. Angew. Math. Mech. 87(2), 102–116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Freidin A.B., Chiskis A.M.: Zones of phase transitions in non-linear elastic isotropic materials. Part 1. Basic relations. Izv Akad Nauk MTT (Mechanics of Solids), 4, 91–109 (1994) (in Russian)

    Google Scholar 

  21. Freidin A.B., Chiskis A.M.: Zones of phase transitions in non-linear elastic isotropic materials. Part 2. Incompressible materials with a potentials solely dependent on one of the invariants of the strain tensor. Izv Akad Nauk MTT (Mechanics of Solids) 5, 49–61 (1994) (in Russian)

    Google Scholar 

  22. Freidin A.B., Vilchevskaya E.N., Sharipova L.L.: Two-phase deformations within the framework of phase transition zones. Theor. Appl. Mech., 28/29, 145–167 (2002)

    Article  MathSciNet  Google Scholar 

  23. Fried E.: Construction of two-phase equilibria in a nonelliptic hyperelastic material. J. Elast. 31(2), 71–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gamkrelidze R.V.: On sliding optimal states. Doklady Akademii Nauk SSSR 143, 1243–1245 (1962)

    MathSciNet  Google Scholar 

  25. Garreau S., Guillaume P., Masmoudi M.: The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 39(6), 1756–1778 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Giaquinta, M., Hildebrandt, S.: Calculus of variations. I The Lagrangian Formalism, Grundlehren der Mathematischen Wissenschaften, Vol. 310. Springer, Berlin, 1996

  27. Gibbs, J.: Willard. On the equilibrium of heterogeneous substances. Trans. Connecticut Acad. III, 108–248 and 343–524 (1873/1874)

  28. Grabovsky, Y., Kucher, V.A., Truskinovsky, L.: Weak variations of Lipschitz graphs and stability of phase boundaries. Contin. Mech. Thermodyn. (2010, in press)

  29. Grabovsky Y., Truskinovsky L.: How many conditions are there on a phase boundary. Oberwolfach Reports 6(3), 2359–2362 (2009)

    Google Scholar 

  30. Graves L.M.: The weierstrass condition for multiple integral variation problems. Duke Math. J. 5(3), 656–660 (1939)

    Article  MathSciNet  Google Scholar 

  31. Grinfeld M.: Instability of the separation boundary between a non-hydrostatically stressed solid and a melt. Sov. Phys. Dokl. 31, 831 (1986)

    ADS  Google Scholar 

  32. Grinfeld M.A.: On conditions of thermodynamic phase equilibrium in non-linearly elastic body. Dokl. Akad. Nauk SSSR 251(4), 824–827 (1980) (in Russian)

    Google Scholar 

  33. Grinfeld M.A.: Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, New York (1991)

    Google Scholar 

  34. Grinfeld M.A.: The stress driven instability in elastic crystals: Mathematical models and physical manifestations. J. Nonlinear Sci. 3(1), 35–83 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Gurtin M.E.: Two-phase deformations of elastic solids. Arch. Ration. Mech. Anal. 84(1), 1–29 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mem. Acad. Sci. Paris, Vol. 33. Imprimerie nationale, 1908

  37. Hill R.: Energy momentum tensors in elastostatics:some reflections on the general theory. J. Mech. Phys. Solids 34, 305–317 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. James R.D.: Finite deformation by mechanical twinning. Arch. Ration. Mech. Anal. 77(2), 143–176 (1981)

    Article  MATH  Google Scholar 

  39. Klosowicz B., Lurie K.A.: On the optimal nonhomogeneity of a torsional elastic bar. Arch. Mech. (Arch. Mech. Stos.) 24, 239–249 (1972)

    MathSciNet  MATH  Google Scholar 

  40. Knowles J.K.: On the dissipation associated with equilibrium shocks in finite elasticity. J. Elast. 9(2), 131–158 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. Knowles J.K., Sternberg E.: On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics. J. Elast. 8(4), 329–379 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kohn R.V., Strang G.: Optimal design and relaxation of variational problems. Comm. Pure Appl. Math. 39, 113–137 (1986) 139–182 and 353–377

    Article  MathSciNet  MATH  Google Scholar 

  43. Kublanov L.B., Freidin A.B.: Nuclei of a solid phase in a deformable material. Prikl. Mat. Mekh. 52(3), 493–501 (1988)

    MathSciNet  Google Scholar 

  44. Levitas, V.I., Ozsoy, I.B., Preston, D.L.: Interface reorientation during coherent phase transformations. Eur. Phys. Lett. 78(1) (2007)

  45. Lurie K.A.: The Mayer-Bolza problem for multiple integrals and optimization of the behavior of systems with distributed parameters. Prikladnaia Matematika i Mekhanika (PMM), 27(5), 842–853 (1963) (in Russian)

    Google Scholar 

  46. Lurie K.A.: Optimum control of conductivity of a fluid moving in a channel in a magnetic field. J. Appl. Math. Mech. 28(2), 316–327 (1964)

    Article  MathSciNet  Google Scholar 

  47. Lurie K.A.: On the optimal distribution of the resistivity tensor of the working medium in the channel of a MHD generator. Prikladnaia Matematika i Mekhanika (PMM) = Applied Mathematics and Mechanics 34(2), 270–291 (1970)

    Google Scholar 

  48. Lurie, K.A.: Optimal Control in Problems of Mathematical Physics. Nauka, Moscow, 1975. In Russian. English translation in [49]

  49. Lurie K.A.: Applied Optimal Control Theory of Distributed Systems. Plenum Press, New York (1993)

    MATH  Google Scholar 

  50. Lurie K.A., Cherkaev A.V.: Effective characteristics of composite materials and the optimal design of structural elements. (Russian). Uspekhi Mekhaniki = Advances in Mechanics, 9, 3–81 (1986) English translation in [51]

    MathSciNet  Google Scholar 

  51. Lurie, K.A., Cherkaev, A.V.: Effective characteristics of composite materials and the optimal design of structural elements. Topics in the Mathematical Modeling of Composite Materials (Eds.) A. Cherkaev, R. Kohn). Progress in nonlinear differential equations and their applications, Vol. 31. Birkhäuser, Boston, 175–258, 1997

  52. Lurie K.A., Cherkaev A.V., Fedorov A.V. (1982). Regularization of optimal design problems for bars and plates I, II. J. Optim. Theory Appl., 37(4): 499–522, 523–543. The first and the second parts were separately published as [54] and [53]

  53. Lurie, K.A., Fedorov, A.V., Cherkaev, A.V.: On the existence of solutions of certain optimal design problems for bars and plates. Report 668, Ioffe Physico-technical Institute, Acad of Sc, USSR, Leningrad, USSR, 1980. In Russian. English translation in [52], part II

  54. Lurie, K.A., Fedorov, A.V., Cherkaev, A.V.: Relaxation of optimal design problems for bars and plates and eliminating of contradictions in the necessary conditions of optimality. Report 667, Ioffe Physico-technical Institute, Acad of Sc, USSR, Leningrad, USSR, 1980. In Russian. English translation in [52], part I

  55. Maxwell, J.C.: On the dynamic evidence of the molecular composition of bodies. Nature 11(279–280), 357–359, 374–377 (1875)

    Google Scholar 

  56. Morrey C.B. Jr.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2, 25–53 (1952)

    MathSciNet  MATH  Google Scholar 

  57. Murat F.: Un contre-exemple pour le problème du contrôle dans les coefficients. C. R. Acad. Sci. Paris Sér. A-B 273, A708–A711 (1971)

    MathSciNet  Google Scholar 

  58. Murat F.: Théorèmes de non-existence pour des problèmes de contrôle dans les coefficients. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B 274, A395–A398 (1972)

    MathSciNet  Google Scholar 

  59. Murat, F., Simon, S.: Etudes de problemes d’optimal design. Lecture Notes in Computer Science. Vol. 41. Springer, Berlin, 54–62, 1976

  60. Murat, F., Tartar, L.: Calcul des variations et homogénéisation. In Les méthodes de l’homogénéisation: théorie et applications en physique, Collection de la Direction des Etudes et Recherches d’Electricité de France, Vol. 57. Eyrolles, Paris, 319–369, 1985

  61. Murat, F., Tartar, L.: Optimality conditions and homogenization. Nonlinear Variational Problems (Isola d’Elba, 1983). Pitman Publishing Ltd., London, 1–8, 1985

  62. Pitteri, M., Zanzotto, G.: Continuum Models for Phase Transitions and Twinning in Crystals. Applied Mathematics, Vol. 19. Chapman & Hall/CRC, Boca Raton, 2003

  63. Robin P.-Y.F.: Thermodynamic equilibrium across a coherent interface in a stressed crystal. Am. Mineralogist 59(11–12), 1286–1298 (1974)

    Google Scholar 

  64. Roitburd A.L., Kosenko N.S.: Orientational dependence of elastic energy of a plane interlayer in a system of coherent phases. Physica Status Solidi A 35(2), 735–746 (1976)

    Article  ADS  Google Scholar 

  65. Rosakis P.: Compact zones of shear transformation in an anisotropic solid. J. Mech. Phys. Solids 40(6), 1163–1195 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Roytburd A., Slutsker J.: Deformation of adaptive materials. Part III. Deformation of crystals with polytwin product phases. J. Mech. Phys. Solids 49(8), 1795–1822 (2001)

    Article  ADS  MATH  Google Scholar 

  67. Šilhavý M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin (1997)

    MATH  Google Scholar 

  68. Šilhavý, M.: On the hysteresis in martensitic transformations. Rational continua, classical and new. Springer Italia, Milan, 151–168, 2003

  69. Šilhavý, M.: Maxwell’s relation for isotropic bodies. Mechanics of Material Forces. Adv. Mech. Math., Vol. 11. Springer, New York, 281–288, 2005

  70. Silling S.A.: Consequences of the Maxwell relation for anti-plane shear deformations of an elastic solid. J. Elast. 19(3), 241–284 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  71. Sokolowski J., Zolesio J.-P.: Introduction to Shape Optimization Shape Sensitivity Analysis. Springer, Berlin (1992)

    MATH  Google Scholar 

  72. Tartar, L.: Problèmes de contrôle des coefficients dans des équations aux dérivées partielles. In: A. Bensoussan and J.-L. Lions, editors, Control theory, numerical methods and computer systems modelling (Internat. Sympos., IRIA LABORIA, Rocquencourt, 1974). Lecture Notes in Econom. and Math. Systems, Vol. 107., Springer, Berlin, 420–426 (1975)

  73. Young L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendue, Soc. Sciences & Lettres, Varsovie, cl. III 30, 212–234 (1937)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Truskinovsky.

Additional information

Communicated by S. Müller

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabovsky, Y., Truskinovsky, L. Roughening Instability of Broken Extremals. Arch Rational Mech Anal 200, 183–202 (2011). https://doi.org/10.1007/s00205-010-0377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0377-8

Keywords

Navigation