Skip to main content
Log in

Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we provide a sufficient condition, in terms of only one of the nine entries of the gradient tensor, that is, the Jacobian matrix of the velocity vector field, for the global regularity of strong solutions to the three-dimensional Navier–Stokes equations in the whole space, as well as for the case of periodic boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  • Berselli L.C.: a regularity criterion for the solutions to the 3D Navier–Stokes equations. Differential Integral Equations 15, 1129–1137 (2002)

    MathSciNet  MATH  Google Scholar 

  • Berselli L.C., Galdi G.P.: Regularity criteria involving the pressure for the weak solutions to the Navier–Stokes equations. Proc. Am. Math. Soc 130, 3585–3595 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Cao C., Titi E.S.: Regularity criteria for the three-dimensional Navier–Stokes equations. Indiana Univ. Math. J. 57, 2643–2662 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae D., Lee J.: Regularity criterion in terms of pressure for the Navier-Stokes equations. Nonlinear Anal. 46, 727–735 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin P.: A few results and open problems regarding incompressible fluids. Notices Amer. Math. Soc. 42, 658–663 (1995)

    MathSciNet  MATH  Google Scholar 

  • Constantin P., Foias C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  • Da Veiga H.B.: A sufficient condition on the pressure for the regularity of weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 2, 99–106 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Doering C., Gibbon J.: Applied Analysis of the Navier–Stokes Equations. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  • Escauriaza L., Seregin G.A., Sverak V.: L 3, ∞-solutions of the Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003)

    Article  MathSciNet  Google Scholar 

  • Fujita H., Kato T.: On the Navier-Stokes initial value problem. I. Arch. Rat. Mech. Anal. 3, 269–315 (1964)

    Article  MathSciNet  Google Scholar 

  • Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol. I, II. Springer, New York (1994)

    Book  Google Scholar 

  • Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differential Equations 62, 186–212 (1986)

    Article  MathSciNet  Google Scholar 

  • Giga Y., Miyakawa T.: Solutions in L r of the Navier–Stokes initial value problem. Arch. Rational Mech. Anal. 89, 267–281 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • He C.: New sufficient conditions for regularity of solutions to the Navier–Stokes equations. Adv. Math. Sci. Appl. 12, 535–548 (2002)

    MathSciNet  MATH  Google Scholar 

  • Kato T.: Strong L p solutions of the Navier–Stokes equation in R m, with applications to weak solutions. Math. Z. 187, 471–480 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Kukavica I.: Role of the pressure for validity of the energy equality for solutions of the Navier-Stokes equation. J. Dyn. Diff. Equ. 18, 461–482 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Kukavica I., Ziane M.: One component regularity for the Navier–Stokes equation. Nonlinearity 19(2), 453–469 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Ladyzhenskaya, O.A.: Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York, English translation, 2nd ed., 1969

  • Ladyzhenskaya O.A.: The Boundary Value Problems of Mathematical Physics. Springer, Berlin (1985)

    MATH  Google Scholar 

  • Ladyzhenskaya, O.A.: The sixth millennium problem: Navier–Stokes equations, existence and smoothness. (Russian) Uspekhi Mat. Nauk. 58(2), 45–78 (2003); translation in Russian Math. Surveys 58(2), 251–286 (2003)

  • Lemarié–Rieusset P.G.: Recent Developments in the Navier–Stokes Problem. Chapman & Hall, London (2002)

    Book  MATH  Google Scholar 

  • Leray J.: Sur le mouvement dun liquide visquex emplissant lespace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  • Lions J.L.: Quelques Méthodes De Résolution Des Problèmes Aux Limites Non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  • Lions P.L.: Mathematical Topics in Fluid Mechanics: Volume 1: Incompressible Models. Oxford University Press, Oxford (1996)

    Google Scholar 

  • Pokorný M.: On the result of He concerning the smoothness of solutions to the Navier–Stokes equations. Electron. J. Diff. Equ. 11, 1–8 (2003)

    Google Scholar 

  • Pokorný M., Zhou Y.: On the regularity of the solutions of the Navier–Stokes equations via one velocity component. Nonlinearity 23, 1097–1107 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Prodi G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Raugel G., Sell G.R.: Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions. J. Am. Math. Soc. 6, 503–568 (1993)

    MathSciNet  MATH  Google Scholar 

  • Seregin G., Sverák V.: Navier–Stokes equations with lower bounds on the pressure. Arch. Ration. Mech. Anal. 163(1), 65–86 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Serrin J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rational Mech. Anal. 9, 187–191 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sohr H.: The Navier–Stokes Equations, An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel (2001)

    MATH  Google Scholar 

  • Sohr H.: A regularity class for the Navier–Stokes equations in Lorentz spaces. J. Evol. Equ. 1, 441–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Sohr R.: A generalization of Serrin’s regularity criterion for the Navier–Stokes equations. Quad. Mat. 10, 321–347 (2002)

    MathSciNet  Google Scholar 

  • Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. North–Holland, 1984

  • Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. 2nd edn, SIAM, 1995

  • Temam, R.: Some developments on Navier–Stokes equations in the second half of the 20th century. Development of Mathematics 1950–2000. Birkhauser, Basel, 1049–1106, 2000

  • Zhou Y.: A new regularity criterion for the Navier–Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9, 563–578 (2002)

    MathSciNet  MATH  Google Scholar 

  • Zhou Y.: On regularity criteria in terms of pressure for the Navier–Stokes equations in R 3. Proc. Amer. Math. Soc. 134, 149–156 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edriss S. Titi.

Additional information

Communicated by V. Šveràk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, C., Titi, E.S. Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor. Arch Rational Mech Anal 202, 919–932 (2011). https://doi.org/10.1007/s00205-011-0439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0439-6

Keywords

Navigation