Skip to main content
Log in

Existence and Non-Existence of Fisher-KPP Transition Fronts

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider Fisher-KPP-type reaction–diffusion equations with spatially inhomogeneous reaction rates. We show that a sufficiently strong localized inhomogeneity may prevent existence of transition-front-type global-in-time solutions while creating a global-in-time bump-like solution. This is the first example of a medium in which no reaction–diffusion transition front exists. A weaker localized inhomogeneity leads to the existence of transition fronts, but only in a finite range of speeds. These results are in contrast with both Fisher-KPP reactions in homogeneous media as well as ignition-type reactions in inhomogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci 2, 151–218 (1975)

    MATH  MathSciNet  Google Scholar 

  2. Aronson D.G.: Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berestycki, H., Hamel, F.: Generalized travelling waves for reaction–diffusion equations. In: Perspectives in Nonlinear Partial Differential Equations. In Honor of H. Brezis, Contemp. Math., Vol. 446. American Mathematical Society, Providence, 2007

  4. Berestycki, H., Hamel,F.: Generalized Transition Waves and Their Properties, 2010. arxiv.org/abs/1012.0794, preprint

  5. Berestycki H., Hamel F., Matano H.: Bistable traveling waves around an obstacle. Commun. Pure Appl. Math. 62, 729–788 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fife P.C., McLeod J.B.: The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    MATH  MathSciNet  Google Scholar 

  7. Fisher R.: The wave of advance of advantageous genes. Ann. Eugenics 7, 355–369 (1937)

    Article  Google Scholar 

  8. Hamel F.: Nadirashvili, N.: Entire solutions of the KPP equation. Commun. Pure Appl. Math. 52, 1255–1276 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hamel F., Nadirashvili N.: Travelling fronts and entire solutions of the Fisher-KPP equation in \({\mathbb{R}^N}\) . Arch. Ration. Mech. Anal. 157, 91–163 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Húska J., Poláčik P.: Exponential separation and principal Floquet bundles for linear parabolic equations on \({\mathbb{R}^N}\) . Discrete Contin. Dyn. Syst. 20, 81–113 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Levitan B.M.: Inverse Sturm-Liouville problems. BNU Science press, Utrecht (1987)

    MATH  Google Scholar 

  12. Kolmogorov A.N., Petrovskii I.G., Piskunov N.S.: Étude de l’équation de la chaleur avec croissance de la quantit de matière et son application à un problème biologique. Bull. Moskov. Gos. Univ. Mat. Mekh. 1, 1–25 (1937)

    Google Scholar 

  13. Matano, H.: Talks presented at various conferences

  14. Mellet A., Roquejoffre J.-M., Sire Y.: Generalized fronts for one-dimensional reaction–diffusion equations. Discrete Contin. Dyn. Syst. 26, 303–312 (2010)

    MATH  MathSciNet  Google Scholar 

  15. Nadin, Grégoire, Rossi, Luca: Propagation Phenomena for Time Heterogeneous KPP Reaction–Diffusion Equations, 2011. arxiv.org/abs/1104.3686, preprint

  16. Nolen J., Ryzhik L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincar Anal. Non Linaire 26, 1021–1047 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Pinchover Y.: Large time behavior of the heat kernel. J. Funct. Anal 206, 191–209 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shen W.: Traveling waves in diffusive random media. J. Dyn. Diff. Equ. 16(4), 1011–1060 (2004)

    Article  MATH  Google Scholar 

  19. Shu Y., Li W.-T., Liu N.-W.: Generalized fronts in reaction–diffusion equations with mono-stable nonlinearity. Nonlinear Anal. 74, 433–440 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zlatoš, A.: Generalized Traveling Waves in Disordered Media: Existence, Uniqueness, and Stability, 2009. arxiv.org/abs/0901.2369, preprint

  21. Zlatoš, A.: Transition Fronts in Inhomogeneous Fisher-KPP Reaction–Diffusion Equations, 2011. arxiv.org/abs/1103.3094, preprint

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Zlatoš.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nolen, J., Roquejoffre, JM., Ryzhik, L. et al. Existence and Non-Existence of Fisher-KPP Transition Fronts. Arch Rational Mech Anal 203, 217–246 (2012). https://doi.org/10.1007/s00205-011-0449-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0449-4

Keywords

Navigation