Skip to main content
Log in

Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The Navier–Stokes–Fourier system describing the motion of a compressible, viscous and heat conducting fluid is known to possess global-in-time weak solutions for any initial data of finite energy. We show that a weak solution coincides with the strong solution, emanating from the same initial data, as long as the latter exists. In particular, strong solutions are unique within the class of weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bechtel S.E., Rooney F.J., Forest M.G.: Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fluids. J. Appl. Mech. 72, 299–300 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bresch D., Desjardins B.: Stabilité de solutions faibles globales pour les équations de Navier–Stokes compressibles avec température. C. R. Acad. Sci. Paris 343, 219–224 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bresch D., Desjardins B.: On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Carrillo J., Jüngel A., Markowich P.A., Toscani G., Unterreiter A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatshefte Math. 133, 1–82 (2001)

    Article  MATH  Google Scholar 

  5. Dafermos C.M.: The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 70, 167–179 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Desjardins B.: Regularity of weak solutions of the compressible isentropic Navier–Stokes equations. Commun. Partial Differ. Equ. 22, 977–1008 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ducomet B., Feireisl E.: The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars. Commun. Math. Phys. 266, 595–629 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Eliezer S., Ghatak A., Hora H.: An Introduction to Equations of States, Theory and Applications. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  9. Ericksen J.L.: Introduction to the Thermodynamics of Solids, revised edn. Applied Mathematical Sciences, vol. 131. Springer, New York (1998)

    Google Scholar 

  10. Escauriaza L., Seregin G., Sverak V.: L 3,∞-solutions of Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58(2), 211–250 (2003)

    Article  MathSciNet  Google Scholar 

  11. Fefferman, C.L.: Existence and smoothness of the Navier–Stokes equation. In: The Millennium Prize Problems, pp. 57–67. Clay Math. Inst., Cambridge, 2006

  12. Feireisl E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  13. Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. (2011, submitted)

  14. Feireisl E., Novotný A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser-Verlag, Basel (2009)

    Book  MATH  Google Scholar 

  15. Feireisl, E., Novotný, A., Sun, Y.: Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J. (2011, in press)

  16. Feireisl, E., Pražák, D.: Asymptotic Behavior of Dynamical Systems in Fluid Mechanics. AIMS, Springfield, 2010

  17. Germain, P.: Weak-strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. (2010, published online)

  18. Hoff D., Serre D.: The failure of continuous dependence on initial data for the Navier–Stokes equations of compressible flow. SIAM J. Appl. Math. 51, 887–898 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Ladyzhenskaya, O.A.: The mathematical Theory f Viscous Incompressible Flow. Gordon and Breach, New York, 1969

  20. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions P.-L.: Mathematical Topics in Fluid Dynamics Compressible Models, vol 2. Oxford Science Publication, Oxford (1998)

    Google Scholar 

  22. Prodi G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Saint-Raymond L.: Hydrodynamic limits: some improvements of the relative entropy method. Ann. I. H. Poincaré AN 26, 705–744 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  24. Serrin J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  25. Temam R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Feireisl.

Additional information

Communicated by C. Dafermos

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feireisl, E., Novotný, A. Weak–Strong Uniqueness Property for the Full Navier–Stokes–Fourier System. Arch Rational Mech Anal 204, 683–706 (2012). https://doi.org/10.1007/s00205-011-0490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0490-3

Keywords

Navigation