Skip to main content
Log in

Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We present a geometric theory of nonlinear solids with distributed dislocations. In this theory the material manifold—where the body is stress free—is a Weitzenböck manifold, that is, a manifold with a flat affine connection with torsion but vanishing non-metricity. Torsion of the material manifold is identified with the dislocation density tensor of nonlinear dislocation mechanics. Using Cartan’s moving frames we construct the material manifold for several examples of bodies with distributed dislocations. We also present non-trivial examples of zero-stress dislocation distributions. More importantly, in this geometric framework we are able to calculate the residual stress fields, assuming that the nonlinear elastic body is incompressible. We derive the governing equations of nonlinear dislocation mechanics covariantly using balance of energy and its covariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R., Marsden J.E., Ratiu T.: Manifolds, Tensor Analysis, and Applications. Springer-Verlag, New York (1988)

    Book  MATH  Google Scholar 

  2. Acharya A., Bassani J.L.: Lattice incompatibility and a gradient theory of crystal plasticity. J. Mech. Phys. Solids 48(8), 1565–1595 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Acharya A.: A model of crystal plasticity based on the theory of continuously distributed dislocations. J. Mech. Phys. Solids 49, 761–784 (2001)

    Article  ADS  MATH  Google Scholar 

  4. Acharya A.: Driving forces and boundary conditions in continuum dislocation mechanics. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 459, 1343–1363 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Acharya A.: Constitutive analysis of finite deformation field dislocation mechanics. J. Mech. Phys. Solids 52, 301–316 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Acharya, A.: A counterpoint to Cermelli and Gurtin’s criteria for choosing ‘correct’ geometric dislocation tensor in finite plasticity. IUTAM Symposium on Theoretical, Modelling and Computational Aspects of Inelastic Media (Ed. B.D. Reddy), pp. 99–105, 2008

  7. Berdichevsky V.L.: Continuum theory of dislocations revisited. Continuum Mech. Thermodyn. 18(3–4), 195–222 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bilby, B.A., Gardner, L.R.T., Stroh, A.N.: Continuous distribution of dislocations and the theory of plasticity. Proceedings of the Ninth International Congress of Applied Mechanics, Brussels, 1956, Universite de Bruxelles, pp. 35–44, 1957

  9. Bilby B.A., Bullough R., Smith E.: Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry. Proc. R. Soc. Lond. A 231(1185), 263–273 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bilby B.A., Smith E.: Continuous distributions of dislocations. III. Proc. R. Soc. Lond. A 236(1207), 481–505 (1956)

    Article  MathSciNet  ADS  Google Scholar 

  11. Bilby, B.A.: Geometry and continuum mechanics. Mechanics of Generalized Continua (Ed. E. Kröner). Springer, Berlin-Heidelberg-New York, pp. 126–140, 1968

  12. Bloomer I.: Strain due to a continuous, isotropic distribution of screw dislocations. Int. J. Solids Struct. 18(10), 847–855 (1982)

    Article  MATH  Google Scholar 

  13. Bochner S., Yano K.: Tensor-fields in non-symmetric connections. Ann. Math. 56(3), 504–519 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cartan E.: Sur les variétés à à connexion affine et la théorie de la relativité généralisée (première partie suite). Annales Scientifiques de l’Ecole Normale Supé rieure 41, 1–25 (1924)

    MathSciNet  Google Scholar 

  15. Cartan E.: On Manifolds with an Affine Connection and the Theory of General Relativity. Bibliopolis, Napoli (1995)

    Google Scholar 

  16. Cheng K.S., Ni W.T.: Conditions for the local existence of metric in a generic affine manifold. Math. Proc. Camb. Philos. Soc. 87, 527–534 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chow, B., Peng, L., Lei, N.: Hamilton’s Ricci Flow. American Mathematical Society, 2003

  18. Coleman B.D., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Cosserat E., Cosserat F.: Sur la théorie des corps deformables. Dunod, Paris (1909)

    Google Scholar 

  20. Eisenhart L.P., Veblen O.: The Riemann geometry and its generalization. Proc. Natl. Acad. Sci. USA 8, 19–23 (1922)

    Article  ADS  Google Scholar 

  21. Fernandez, O.E., Bloch, A.M.: The Weitzenböck connection and time reparameterization in nonholonomic mechanics. J. Math. Phys. 52(1), 012901

  22. Frankel T.: The Geometry of Physics. Cambridge University Press, UK (1997) (Second Edition 2004)

    MATH  Google Scholar 

  23. Frölicher , A. , Nijenhuis A.: Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms. Indag. Math. 18, 338– (1956)

    Google Scholar 

  24. Gogala B.: Torsion and related concepts: an introductory overview. Int. J. Theor. Phys. 19(8), 573–586 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gordeeva I.A., Pan’zhenskii V.I., Stepanov S.E.: Riemann–Cartan manifolds. J. Math. Sci. 169(3), 342–361 (2010)

    Article  MATH  Google Scholar 

  26. Green A.E., Rivlin R.S.: On Cauchy’s equations of motion. ZAMP 15, 290–293 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Gupta A., Steigmann D.J., Stolken J.S.: On the evolution of plasticity and incompatibility. Math. Mech. Solids 12(6), 583–610 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Head A.K., Howison S.D., Ockendon J.R., Tighe S.P.: An equilibrium-theory of dislocation continua. SIAM Rev. 35(4), 580–609 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hehl F.W., Vonderheyde P., Kerlick G.D., Nester J.M.: General relativity with spin and torsion: foundations and prospects. Rev. Mod. Phys. 48, 393–416 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  30. Hehl F.W., Kopczynski W., McCrea J.D., McCrea J.D., McCrea J.D.: Chern-Simons terms in metric-affine space-time: Bianchi identities as Euler-Lagrange equations. J. Math. Phys. 32, 2169–2180 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Hehl F.W., Obukhov Y.N.: Foundations of Classical Electrodynamics Charge, Flux, and Metric. Birkhäuser, Boston (1983)

    Google Scholar 

  32. Heinicke C., Baekler P., Hehl F.W.: Einstein-Aether theory, violation of Lorentz invariance, and metric-affine gravity. Phys. Rev. D 72(2), 025012 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  33. Hehl F.W., Obukhov Y.N.: Éli Cartan’s torsion in geometry and in field theory, an essay. Annales de la Fondation Louis de Broglie 32(2–3), 157–194 (2007)

    MathSciNet  Google Scholar 

  34. Kanso E., Arroyo M., Tong Y., Yavari A., Marsden J.E., Desbrun M.: On the geometric character of force in continuum mechanics. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 58(5), 843–856 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Katanaev M.O., Volovich I.V.: Theory of defects in solids and 3-dimensional gravity. Ann. Phys. 216, 1–28 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Kondo, K.: Geometry of elastic deformation and incompatibility. Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry (ed. K. Kondo), vol. 1, Division C, Gakujutsu Bunken Fukyo-Kai, pp. 5–17, 1955

  37. Kondo, K.: Non-Riemannien geometry of imperfect crystals from a macroscopic viewpoint. Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry (ed. K. Kondo), vol. 1, Division D-I, Gakujutsu Bunken Fukyo-Kai, pp. 6–17, 1955

  38. Kröner E., Seeger A.: Nicht-lineare elastizitatstheorie der versetzungen und eigenspannungen. Arch. Rational Mech. Anal. 3(2), 97–119 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Kröner E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Rational Mech. Anal. 4(4), 273–334 (1960)

    MathSciNet  MATH  Google Scholar 

  40. Kröner E.: Dislocation theory as a physical field theory. Mechanica 31, 577–587 (1996)

    Article  MATH  Google Scholar 

  41. Kröner E., Anthony K.H.: Dislocations and disclinations in material structures: basic topological concepts. Annu. Rev. Mater. Sci. 5, 43–72 (1975)

    Article  ADS  Google Scholar 

  42. Kröner E.: The internal mechanical state of solids with defects. Int. J. Solids Struct. 29, 1849–1857 (1992)

    Article  MATH  Google Scholar 

  43. Kröner E.: Dislocations in crystals and in continua: a confrontation. Int. J. Eng. Sci. 15, 2127–2135 (1995)

    Article  Google Scholar 

  44. Lazar M.: An elastoplastic theory of dislocations as a physical field theory with torsion. J. Phys. A Math. Gen. 35, 1983–2004 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  45. Le K.C., Stumpf H.: Nonlinear continuum theory of dislocations. Int. J. Eng. Sci. 34, 339–358 (1995)

    Article  MathSciNet  Google Scholar 

  46. Le K.C., Stumpf H.: A model of elastoplastic bodies with continuously distributed dislocations. Int. J. Plasticity 12, 611–627 (1996)

    Article  MATH  Google Scholar 

  47. Lee E.H., Liu D.T.: Finite-strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys. 38, 19–27 (1967)

    Article  ADS  Google Scholar 

  48. Lee J.M.: Riemannian Manifold: An Introduction to Curvature. Springer-Verlag, New York (1997)

    MATH  Google Scholar 

  49. Lopez-Pamies O.: A new I 1-based hyperelastic model for rubber elastic materials. Comptes Rendus Mecanique 338, 3–11 (2010)

    Article  ADS  MATH  Google Scholar 

  50. Madsen I.H., Tornehave J.: From Calculus to Cohomology: De Rham Cohomology and Characteristic Classes. Cambridge University Press, UK (1997)

    MATH  Google Scholar 

  51. Marsden J.E., Hughes T.J.R.: Mathematical Foundations of Elasticity. Dover, New York (1983)

    MATH  Google Scholar 

  52. Miri M., Rivier N.: Continuum elasticity with topological defects, including dislocations and extra-matter. J. Phys. A: Math. Gen. 35, 1727–1739 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. W.H. Freeman and Company, New York (1973)

    Google Scholar 

  54. Mura T.: Micromechanics of Defects in Solids. Martinus Nijhoff, The Hague (1982)

    Google Scholar 

  55. Nakahara M.: Geometry, Topology and Physics. Taylor & Francis, New York (2003)

    Book  MATH  Google Scholar 

  56. Nester J.M.: Normal frames for general connections. Annalen Der Physik 19(1–2), 45–52 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Ni W.T.: Conditions for an affine manifold with torsion to have a Riemann–Cartan structure. Math. Proc. Camb. Philos. Soc. 90, 517–527 (1981)

    Article  MATH  Google Scholar 

  58. Noll W.: Materially uniform simple bodies with inhomogeneities. Arch. Rational Mech. Anal. 27, 1–32 (1967)

    Article  MathSciNet  ADS  Google Scholar 

  59. Nye J.F.: Some geometrical relations in dislocated crystals, Acta Metal.. 1(2), 153–162 (1953)

    Article  Google Scholar 

  60. Ozakin A., Yavari A.: A geometric theory of thermal stresses. J. Math. Phys. 51, 032902 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  61. Ozakin, A., Yavari, A.: Affine development of closed curves in Weitzenboc̈k manifolds and the Burgers vector of dislocation mechanics. (2012, submitted)

  62. Rosakis P., Rosakis A.J.: The screw dislocation problem in incompressible finite elastostatics: a discussion of nonlinear effects. J. Elasticity 20(1), 3–40 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  63. Ruggiero M.L., Tartaglia A.: Einstein-Cartan theory as a theory of defects in space-time. Am. J. Phys. 71, 1303–1313 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Schouten J.A.: Ricci-Calculus: An Introduction to Tensor Analysis and its Geometrical Applications. Springer-Verlag, Berlin (1926)

    Google Scholar 

  65. Seeger A.: Recent advances in the theory of defects in crystals. Phys. Status Solidi (b) 1(7), 669–698 (1961)

    Article  ADS  Google Scholar 

  66. Simo J.C., Marsden J.E.: On the rotated stress tensor and the material version of the Doyle-Ericksen formula. Arch. Rational Mech. Anal. 86, 213–231 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. Simo J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part I: continuum formulation. Comput. Methods Appl. Mech. Eng. 66(2), 199–219 (1988)

    MathSciNet  MATH  Google Scholar 

  68. Sternberg S.: Lectures on Differential Geometry. American Mathematical Society, New York (1999)

    Google Scholar 

  69. Tod K.P.: Conical singularities and torsion. Class. Quant. Gravity 11, 1331–1339 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. Truesdell C.: The physical components of vectors and tensors. ZAMM 33, 345–356 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  71. Trzȩsowski A.: Geometrical and physical gauging in the theory of dislocations. Rep. Math. Phys. 32, 71–98 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  72. Vanžurová A.: Metrization problem for linear connections and holonomy algebras. Archivum Mathematicum (Brno) 44, 511–521 (2008)

    Google Scholar 

  73. Vanžurová A., Žáčková P.: Metrizability of connections on two-manifolds. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 48, 157–170 (2008)

    Google Scholar 

  74. Vargas J.G., Torr D.G.: Conservation of vector-valued forms and the question of the exietence of gravitational energy-momentum in general relativity. Gen. Relativ. Gravit. 23(6), 713–732 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. Wang C.C.: On geometric structures of simple bodies, a mathematical foundation for the theory of continuous. Arch. Rational Mech. Anal. 27, 33–94 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. Weitzenböck R.: Invariantentheorie. P. Noordhoff, Groningen (1923)

    Google Scholar 

  77. Willis J.R.: Second-order effects of dislocations in anisotropic crystals. Int. J. Eng. Sci. 5(2), 171–190 (1967)

    Article  MATH  Google Scholar 

  78. Yavari A., Marsden J.E., Ortiz M.: On the spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 85–112 (2006)

    Article  MathSciNet  Google Scholar 

  79. Yavari A., Ozakin A.: Covariance in linearized elasticity. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 59(6), 1081–1110 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. Yavari A.: On geometric discretization of elasticity. J. Math. Phys. 49, 022901 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  81. Yavari A., Marsden J.E.: Covariant balance laws in continua with microstructure. Rep. Math. Phys. 63(1), 1–42 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. Yavari A., Marsden J.E.: Energy balance invariance for interacting particle systems. ZAMP 60(4), 723–738 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. Yavari A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20(6), 781–830 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. Yavari, A., Ozakin, A.: Elasticity in a deforming ambient space. (2012, in review)

  85. Yavari, A., Goriely, A.: Riemann–Cartan geometry of nonlinear disclination mechanics. Math. Mech. Solids. doi:10.1177/1081286511436137

  86. Zubov L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Yavari.

Additional information

Communicated by D. Kinderlehrer

Dedicated to the memory of Professor Jerrold E. Marsden (1942–2010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yavari, A., Goriely, A. Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics. Arch Rational Mech Anal 205, 59–118 (2012). https://doi.org/10.1007/s00205-012-0500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0500-0

Keywords

Navigation