Skip to main content
Log in

From Boltzmann’s Equation to the Incompressible Navier–Stokes–Fourier System with Long-Range Interactions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We establish a rigorous demonstration of the hydrodynamic convergence of the Boltzmann equation towards a Navier–Stokes–Fourier system under the presence of long-range interactions. This convergence is obtained by letting the Knudsen number tend to zero and has been known to hold, at least formally, for decades. It is only more recently that a fully rigorous mathematical derivation of this hydrodynamic limit was discovered. However, these results failed to encompass almost all physically relevant collision kernels due to a cutoff assumption, which requires that the cross sections be integrable. Indeed, as soon as long-range intermolecular forces are present, non-integrable collision kernels have to be considered because of the enormous number of grazing collisions in the gas. In this long-range setting, the Boltzmann operator becomes a singular integral operator and the known rigorous proofs of hydrodynamic convergence simply do not carry over to that case. In fact, the DiPerna–Lions renormalized solutions do not even make sense in this situation and the relevant global solutions to the Boltzmann equation are the so-called renormalized solutions with a defect measure developed by Alexandre and Villani. Our work overcomes the new mathematical difficulties coming from the consideration of long-range interactions by proving the hydrodynamic convergence of the Alexandre–Villani solutions towards the Leray solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alexandre R., Desvillettes L., Villani C., Wennberg B.: Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152(4), 327–355 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential. Anal. Appl. (Singap.) 9(2), 113–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexandre R., Morimoto Y., Ukai S., Xu C.-J., Yang T.: The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential. J. Funct. Anal. 262(3), 915–1010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexandre R., Villani C.: On the Boltzmann equation for long-range interactions. Comm. Pure Appl. Math. 55(1), 30–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alexandre R., Villani C.: On the Landau approximation in plasma physics. Ann. Inst. H. Poincaré Anal. Non Linéaire 21(1), 61–95 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  6. Arsénio, D.: On the Boltzmann equation: hydrodynamic limit with long-range interactions and mild solutions. PhD thesis, New York University, New York, 2009

  7. Arsénio, D., Masmoudi, N.: A new approach to velocity averaging lemmas in Besov spaces. J. Math. Pures Appl. (2012) (submitted)

  8. Arsénio D., Masmoudi N.: Regularity of renormalized solutions in the Boltzmann equation with long-range interactions. Comm. Pure Appl. Math. 65(4), 508–548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bardos C., Golse F., Levermore C.D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs for the Boltzmann equation. Comm. Pure Appl. Math. 46(5), 667–753 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bardos C., Golse F., Levermore C.D.: Acoustic and Stokes limits for the Boltzmann equation. C. R. Acad. Sci. Paris Sér. I Math. 327(3), 323–328 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Bardos C., Golse F., Levermore C.D.: The acoustic limit for the Boltzmann equation. Arch. Ration. Mech. Anal. 153(3), 177–204 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bardos C., Golse F., Levermore C.D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63(1–2), 323–344 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  13. Bézard M.: Régularité L p précisée des moyennes dans les équations de transport. Bull. Soc. Math. France 122(1), 29–76 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic equations and asymptotic theory. In: Series in Applied Mathematics (Paris), vol. 4. Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris, 2000. (Edited and with a foreword by Benoît Perthame and Laurent Desvillettes)

  15. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. In: Applied Mathematical Sciences, vol. 106. Springer, New York, 1994

  16. Chemin J.-Y.: Fluides parfaits incompressibles. Astérisque 230, 177 (1995)

    MathSciNet  Google Scholar 

  17. DiPerna R.J., Lions P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. (2) 130(2), 321–366 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. DiPerna R.J., Lions P.-L., Meyer Y.: L p regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(3–4), 271–287 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Golse F., Levermore C.D.: The Stokes–Fourier limit for the Boltzmann equation. C. R. Acad. Sci. Paris Sér. I Math. 333(2), 145–150 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Golse F., Levermore C.D.: Stokes–Fourier and acoustic limits for the Boltzmann equation: convergence proofs. Comm. Pure Appl. Math. 55(3), 336–393 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golse F., Saint-Raymond L.: Velocity averaging in L 1 for the transport equation. C. R. Math. Acad. Sci. Paris 334(7), 557–562 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Golse F., Saint-Raymond L.: The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1), 81–161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Golse F., Saint-Raymond L.: The incompressible Navier-Stokes limit of the Boltzmann equation for hard cutoff potentials. J. Math. Pures Appl. (9) 91(5), 508–552 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Gressman P.T., Strain R.M.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Am. Math. Soc. 24(3), 771–847 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63(1), 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  26. Levermore C.D., Masmoudi N.: From the Boltzmann equation to an incompressible Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 196(3), 753–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lions P.-L.: On Boltzmann and Landau equations. Philos. Trans. R. Soc. Lond. Ser. A 346(1679), 191–204 (1994)

    Article  ADS  MATH  Google Scholar 

  28. Lions P.-L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. (9) 77(6), 585–627 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Lions, P.-L., Masmoudi, N.: From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II. Arch. Ration. Mech. Anal. 158(3), 173–193, 195–211 (2001)

    Google Scholar 

  30. Lions P.-L.: Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire. C. R. Acad. Sci. Paris Sér. I Math. 326(1), 37–41 (1998)

    Article  ADS  MATH  Google Scholar 

  31. Lions P.-L., Masmoudi N.: Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sér. I Math. 329(5), 387–392 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Mouhot C.: Explicit coercivity estimates for the linearized Boltzmann and Landau operators. Comm. Partial Diff. Equ. 31(7–9), 1321–1348 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mouhot C., Strain R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. (9) 87(5), 515–535 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Saint-Raymond L.: Hydrodynamic limits of the Boltzmann equation. Lecture Notes in Mathematics, vol. 1971. Springer, Berlin, 2009

  35. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam, 2002

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo Arsénio.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arsénio, D. From Boltzmann’s Equation to the Incompressible Navier–Stokes–Fourier System with Long-Range Interactions. Arch Rational Mech Anal 206, 367–488 (2012). https://doi.org/10.1007/s00205-012-0557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0557-9

Keywords

Navigation