Skip to main content
Log in

On the Flux Problem in the Theory of Steady Navier–Stokes Equations with Nonhomogeneous Boundary Conditions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the nonhomogeneous boundary value problem for Navier–Stokes equations of steady motion of a viscous incompressible fluid in a two-dimensional, bounded, multiply connected domain \({\Omega = \Omega_1 \backslash \overline{\Omega}_2, \overline\Omega_2\subset \Omega_1}\) . We prove that this problem has a solution if the flux \({\mathcal{F}}\) of the boundary value through ∂Ω 2 is nonnegative (inflow condition). The proof of the main result uses the Bernoulli law for a weak solution to the Euler equations and the one-sided maximum principle for the total head pressure corresponding to this solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amick Ch.J.: Existence of solutions to the nonhomogeneous steady Navier–Stokes equations. Indiana Univ. Math. J. 33, 817–830 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensoussan A., Frehse J.: Regularity Results for Nonlinear Elliptic Systems and Applications. Springer, Berlin (2002)

    MATH  Google Scholar 

  3. Borchers W., Pileckas K.: Note on the flux problem for stationary Navier–Stokes equations in domains with multiply connected boundary. Acta Appl. Math. 37, 21–30 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J. Korobkov, M.V., Kristensen, J.: On the Morse–Sard property and level sets of Sobolev and BV functions. Revista Mat. Iberoamericana (to appear). arXiv:1007.4408v1, [math.AP], 26 July 2010

  5. Burago, D., Burago, Yu., Ivanov, S.: A course in metric geometry. Graduate Studies in Mathematics, vol. 33. AMS, 2001

  6. Coifman R.R., Lions J.L., Meier Y., Semmes S.: Compensated compactness and Hardy spaces. J. Math. Pures App. IX Sér. 72, 247–286 (1993)

    MATH  Google Scholar 

  7. Dorronsoro J.R.: Differentiability properties of functions with bounded variation. Indiana U. Math. J. 38(4), 1027–1045 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992

  9. Finn R.: On the steady-state solutions of the Navier–Stokes equations. III. Acta Math. 105, 197–244 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fujita H.: On the existence and regularity of the steady-state solutions of the Navier–Stokes theorem. J. Fac. Sci. Univ. Tokyo Sect. I 9, 59–102 (1961)

    MathSciNet  MATH  Google Scholar 

  11. Fujita, H.: On stationary solutions to Navier–Stokes equation in symmetric plane domain under general outflow condition. Pitman Research Notes in Mathematics. Proceedings of International Conference on Navier–Stokes Equations. Theory and Numerical Methods, vol. 388, pp. 16–30. Varenna, Italy, June 1997

  12. Fujita H., Morimoto H.: A remark on the existence of the Navier–Stokes flow with non-vanishing outflow condition. GAKUTO Int. Ser. Math. Sci. Appl. 10, 53–61 (1997)

    MathSciNet  Google Scholar 

  13. Galdi G.P.: On the existence of steady motions of a viscous flow with non-homogeneous conditions. Le Matematiche 66, 503–524 (1991)

    MathSciNet  Google Scholar 

  14. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations vol. I, II revised edition (Ed. Truesdell, C.). Springer Tracts in Natural Philosophy, vols. 38, 39. Springer, Berlin, 1998

  15. Gilbarg D., Weinberger H.F.: Asymptotic properties of Leray’s solution of the stationary two-dimensional Navier–Stokes equations. Russian Math. Surveys 29, 109–123 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  16. Gilbarg D., Weinberger H.F.: Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral. Ann. Scuola Norm. Pisa (4) 5, 381–404 (1978)

    MathSciNet  MATH  Google Scholar 

  17. Heywood, J.G.: On the impossibility, in some cases, of the Leray-Hopf condition for energy estimates. J. Math. Fluid Mech. doi:10.1007/s00021-010-0028-8

  18. Hopf E.: Ein allgemeiner Endlichkeitssats der Hydrodynamik. Math. Ann. 117, 764–775 (1941)

    Article  MathSciNet  Google Scholar 

  19. Kapitanskii, L.V., Pileckas, K.: On spaces of solenoidal vector fields and boundary value problems for the Navier–Stokes equations in domains with noncompact boundaries. Trudy Mat. Inst. Steklov 159, 5–36 (1983). English Transl.: Proc. Math. Inst. Steklov 159, 3–34 (1984)

    Google Scholar 

  20. Korobkov M.V.: Bernoulli law under minimal smoothness assumptions. Dokl. Math. 83, 107–110 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kozono H., Janagisawa T.: Leray’s problem on the Navier–Stokes equations with nonhomogeneous boundary data. Math. Z. 262, 27–39 (2009)

    MATH  Google Scholar 

  22. Kronrod, A.S.: On functions of two variables. Uspechi Matem. Nauk (N.S.) 5, 24–134 (1950, in Russian)

  23. Ladyzhenskaya, O.A.: Investigation of the Navier–Stokes equations in the case of stationary motion of an incompressible fluid. Uspech Mat. Nauk. 3, 75–97 (1959, in Russian)

    Google Scholar 

  24. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Fluid. Gordon and Breach, 1969

  25. Ladyzhenskaya, O.A., Solonnikov, V.A.: On some problems of vector analysis and generalized formulations of boundary value problems for the Navier–Stokes equations. Zapiski Nauchn. Sem. LOMI 59, 81–116 (1976, in Russian)

    Google Scholar 

  26. Landis, E.M.: Second Order Equations of Elliptic and Parabolic Type. Nauka, 1971 (in Russian)

  27. Leray J.: Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)

    MathSciNet  MATH  Google Scholar 

  28. Littman W., Stampacchia G., Weinberger H.F.: Regular points for elliptic equations with discontinuous coefficients. Ann. Scuola Norm. Pisa (3) 17, 43–77 (1963)

    MathSciNet  MATH  Google Scholar 

  29. Maz’ya V.G.: Sobolev Spaces. Springer, Berlin (1985)

    Google Scholar 

  30. Miranda C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)

    Book  MATH  Google Scholar 

  31. Morimoto H.: A remark on the existence of 2-D steady Navier–Stokes flow in bounded symmetric domain under general outflow condition. J. Math. Fluid Mech. 9(3), 411–418 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Pukhnachev, V.V.: Viscous flows in domains with a multiply connected boundary. New Directions in Mathematical Fluid Mechanics. The Alexander V. Kazhikhov Memorial Volume (Eds. Fursikov, A.V., Galdi, G.P., Pukhnachev, V.V.). Birkhäuser, Basel, pp. 333–348, 2009

  33. Pukhnachev, V.V.: The Leray problem and the Yudovich hypothesis. Izv. vuzov. Sev.-Kavk. region. Natural sciences. The special issue “Actual Problems of Mathematical Hydrodynamics”, pp. 185–194, 2009 (in Russian)

  34. Russo R.: On the existence of solutions to the stationary Navier–Stokes equations. Ricerche Mat. 52, 285–348 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Russo A.: A note on the two-dimensional steady-state Navier–Stokes problem. J. Math. Fluid Mech. 52, 407–414 (2009)

    Article  Google Scholar 

  36. Russo A., Starita G.: On the existence of steady-state solutions to the Navier–Stokes system for large fluxes. Ann. Scuola Norm. Sup. Pisa 7, 171–180 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Sazonov, L.I.: On the existence of a stationary symmetric solution of the two-dimensional fluid flow problem. Mat. Zametki 54(6), 138–141 (1993, in Russian). English Transl.: Math. Notes 54(6), 1280–1283 (1993)

  38. Solonnikov, V.A., Scadilov, V.E.: On a boundary value problem for a stationary system of Navier–Stokes equations. Proc. Steklov Inst. Math. 125, 186–199 (1973, in Russian)

    Google Scholar 

  39. Takashita A.: A remark on Leray’s inequality. Pac. J. Math. 157, 151–158 (1993)

    Article  Google Scholar 

  40. Taylor M.E.: Partial Differential Equations III. Nonlinear Equations. Springer, Berlin (1996)

    Google Scholar 

  41. Vorovich, I.I., Yudovich, V.I.: Stationary flows of a viscous incompres-sible fluid. Mat. Sbornik 53, 393–428 (1961, in Russian)

    Google Scholar 

  42. Yudovich V.I.: Eleven great problems of mathematical hydrodynamics. Mosc. Math. J. 3(2), 711–737 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Korobkov.

Additional information

Communicated by V. Šverák

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korobkov, M.V., Pileckas, K. & Russo, R. On the Flux Problem in the Theory of Steady Navier–Stokes Equations with Nonhomogeneous Boundary Conditions. Arch Rational Mech Anal 207, 185–213 (2013). https://doi.org/10.1007/s00205-012-0563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0563-y

Keywords

Navigation