Skip to main content
Log in

Wide Oscillation Finite Time Blow Up for Solutions to Nonlinear Fourth Order Differential Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We give sufficient conditions for local solutions to some fourth order semilinear ordinary differential equations to blow up in finite time with wide oscillations, a phenomenon not visible for lower order equations. The result is then applied to several classes of semilinear partial differential equations in order to characterize the blow up of solutions including, in particular, its applications to a suspension bridge model. We also give numerical results which describe this oscillating blow up and allow us to suggest several open problems and to formulate some related conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick C.J., Toland J.F.: Homoclinic orbits in the dynamic phase-space analogy of an elastic strut. Eur. J. Appl. Math. 3, 97–114 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Assago Bridge oscillation.: http://www.youtube.com/watch?v=C5V9ymTD3e4. Accessed 2011

  3. Berchio E., Ferrero A., Gazzola F., Karageorgis P.: Qualitative behavior of global solutions to some nonlinear fourth order differential equations. J. Differ. Equ. 251, 2696–2727 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonheure D.: Multitransition kinks and pulses for fourth order equations with a bistable nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21, 319–340 (2004)

    MathSciNet  ADS  MATH  Google Scholar 

  5. Bonheure, D., Sanchez, L.: Heteroclinic orbits for some classes of second and fourth order differential equations. Handbook of Differential Equation, Vol. III. Elsevier, Amsterdam, 103–202, 2006

  6. Brugnano L., Trigiante D.: Solving Differential Problems by Multistep Initial and Boundary Value Methods. Gordon & Breach, Amsterdam (1998)

    Google Scholar 

  7. Chen Y., McKenna P.J.: Traveling waves in a nonlinearly suspended beam: theoretical results and numerical observations. J. Differ. Equ. 136, 325–355 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Como M., Del Ferraro S., Grimaldi A.: A parametric analysis of the flutter instability for long span suspension bridges. Wind Struct. 8, 1–12 (2005)

    Google Scholar 

  9. D’Ambrosio, L., Mitidieri, E.: Entire solutions of certain fourth order elliptic problems and related inequalities. Preprint

  10. Drábek P., Holubová G., Matas A., Necesal P.: Nonlinear models of suspension bridges: discussion of the results. Appl. Math. 48, 497–514 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fazzo, L.: Traballa il ponte di Assago: spavento dopo il concerto, il Giornale.it, 26 Feb. 2011. http://www.ilgiornale.it/milano/traballa_ponte_assago_spavento_dopo_concerto/26-02-2011/articolo-id=508454

  12. Ferrero A., Gazzola F., Grunau H.-Ch.: Decay and eventual local positivity for biharmonic parabolic equations. Discrete Contin. Dyn. Syst. 21, 1129–1157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fujita H.: On the blowing up of solutions of the Cauchy problem u t  = Δu + u 1+α. J. Fac. Sci. Univ. Tokyo Sect. I Math. 13, 109–124 (1966)

    MATH  Google Scholar 

  14. Gazzola F., Grunau H.-Ch.: Radial entire solutions for supercritical biharmonic equations. Math. Ann. 334, 905–936 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gazzola F., Grunau H.-Ch.: Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay. Calculus Var. 30, 389–415 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gazzola F., Grunau H.-Ch.: Eventual local positivity for a biharmonic heat equation in \({\mathbb{R}^n}\) . Discrete Contin. Dyn. Syst. 1, 83–87 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Gazzola F., Grunau H.-Ch.: Some new properties of biharmonic heat kernels. Nonlinear Anal. 70, 2965–2973 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gazzola F., Pavani R.: Blow up oscillating solutions to some nonlinear fourth order differential equations. Nonlinear Anal. 74, 6696–6711 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gazzola, F., Pavani, R.: Blow-up oscillating solutions to some nonlinear fourth order differential equations describing oscillations of suspension bridges. IABMAS12, 6th International Conference on Bridge Maintenance, Safety, Management, Resilience and Sustainability, Stresa 2012 (Eds. Biondini and Frangopol). Taylor & Francis Group, London, 3089–3093, 2012

  20. Hunt G.W., Bolt H.M., Thompson J.M.T.: Localisation and the dynamical phase-space analogy. Proc. Roy. Soc. Lond. A 425, 245–267 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Iavernaro F., Mazzia F.: Block-boundary value methods for the solution of ordinary differential equations. SIAM J. Sci. Comput. 21, 323–339 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lazer A.C., McKenna P.J.: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Rev. 32, 537–578 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. London Millennium Bridge oscillation. http://www.youtube.com/watch?v=gQK21572oSU. Accessed 2007

  24. Macdonald J.H.G.: Lateral excitation of bridges by balancing pedestrians. Proc. R. Soc. A: Math. Phys. Eng. Sci. 465, 1055–1073 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. McKenna P.J.: Large-amplitude periodic oscillations in simple and complex mechanical systems: outgrowths from nonlinear analysis. Milan J. Math. 74, 79–115 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. McKenna P.J., Walter W.: Traveling waves in a suspension bridge. SIAM J. Appl. Math. 50, 703–715 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peletier, L.A., Troy, W.C.: Spatial patterns. Higher order models in physics and mechanics. Progress in Nonlinear Differential Equations and their Applications, Vol. 45. Birkhäuser Boston Inc., Boston, 2001

  28. Peletier M.A.: Sequential buckling: a variational analysis. SIAM J. Math. Anal. 32, 1142–1168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pavani, R.: About the numerical conservation of first integral by a class of symmetric methods. Mathematical Problems in Engineering, Aerospace and Sciences, Vol. 5. Cambridge Scientific Publishers, Cambridge, 267–281, 2011

  30. Sanderson, K.: Millennium bridge wobble explained. Nature. doi:10.1038/news.2008.1311. Published online 17 Dec 2008

  31. Stella, A.: Assago, la passerella della paura smetterà à di ballare. Corriere della Sera, 01 Marzo 2011, http://milano.corriere.it/milano/notizie/cronaca/11_marzo_1/assago-passerella-ammortizzatore-oscillazioni-forum-190124249413.shtml

  32. Tacoma Narrows Bridge collapse. http://www.youtube.com/watch?v=3mclp9QmCGs

  33. Wang X.: On the Cauchy problem for reaction-diffusion equations. Trans. Am. Math. Soc. 337, 549–590 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Gazzola.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazzola, F., Pavani, R. Wide Oscillation Finite Time Blow Up for Solutions to Nonlinear Fourth Order Differential Equations. Arch Rational Mech Anal 207, 717–752 (2013). https://doi.org/10.1007/s00205-012-0569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0569-5

Keywords

Navigation