Skip to main content
Log in

Qualitative Behavior of Solutions for Thermodynamically Consistent Stefan Problems with Surface Tension

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the qualitative behavior of a thermodynamically consistent two-phase Stefan problem with surface tension and with or without kinetic undercooling. It is shown that these problems generate local semiflows in well-defined state manifolds. If a solution does not exhibit singularities in a sense made precise herein, it is proved that it exists globally in time and its orbit is relatively compact. In addition, stability and instability of equilibria are studied. In particular, it is shown that multiple spheres of the same radius are unstable, reminiscent of the onset of Ostwald ripening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alikakos N., Fusco G.: Ostwald ripening for dilute systems under quasistationary dynamics. Commun. Math. Phys. 238, 429–479 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Alikakos N., Fusco G., Karali G.: The effect of the geometry of the particle distribution in Ostwald ripening. Commun. Math. Phys. 238, 481–488 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Alikakos N., Fusco G., Karali G.: Ostwald ripening in two dimensions-the rigorous derivation of the equations from the Mullins–Sekerka dynamics. J. Differ. Equ. 205, 1–49 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alikakos N., Fusco G., Karali G.: Continuum limits of particles interacting via diffusion. Abstr. Appl. Anal. 2004, 215–237 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Almgren F., Wang L.: Mathematical existence of crystal growth with Gibbs-Thomson curvature effects. J. Geom. Anal. 10, 1–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderson D.M., Cermelli P., Fried E., Gurtin M.E., McFadden G.B.: General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids. J. Fluid Mech. 581, 323–370 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Athanasopoulos I., Caffarelli L., Salsa S.: Regularity of the free boundary in parabolic phase-transition problems. Acta Math. 176, 245–282 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Athanasopoulos I., Caffarelli L., Salsa S.: Phase transition problems of parabolic type: flat free boundaries are smooth. Comm. Pure Appl. Math 51, 77–112 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bazalii B.V.: Stefan problem for the Laplace equation with regard to the curvature of the free boundary. Ukrainian Math. J. 49, 1465–1484 (1997)

    Article  MathSciNet  Google Scholar 

  10. Caffarelli L.A.: The regularity of free boundaries in higher dimensions. Acta Math. 139, 155–184 (1977)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli L.A.: Some aspects of the one-phase Stefan problem. Indiana Univ. Math. J. 27, 73–77 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli L.A., Evans L.C.: Continuity of the temperature in the two-phase Stefan problem. Arch. Rational Mech. Anal. 81, 199–220 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Caffarelli L.A., Friedman A.: Continuity of the temperature in the Stefan problem. Indiana Univ. Math. J. 28, 53–70 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Caginalp G.: An analysis of a phase field model of a free boundary. Arch. Rational Mech. Anal. 92, 205–245 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Chalmers B.: Principles of solidification. Krieger, Huntington (1977)

    Google Scholar 

  16. Chen X.: The Hele–Shaw problem and area-preserving curve-shortening motion. Arch. Rational Mech. Anal. 123, 117–151 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Chen X., Hong J., Yi F.: Existence, uniqueness, and regularity of classical solutions of the Mullins–Sekerka problem. Comm. Partial Differ. Equ. 21, 1705–1727 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen X., Jones J., Troy W.: Linear stability of a solid ball in an undercooled liquid. J. Math. Anal. Appl. 193, 859–888 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen X., Reitich F.: Local existence and uniqueness of solutions of the Stefan problem with surface tension and kinetic undercooling. J. Math. Anal. Appl. 164, 350–362 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Denk, R., Hieber, M., Prüss, J.: \({\mathcal{R}}\) -boundedness, Fourier multipliers, and problems of elliptic and parabolic type, AMS Memoirs 788, Providence (2003)

  21. Denk R., Prüss J., Zacher R.: Maximal L p -regularity of parabolic problems with boundary conditions of relaxation type. J. Funct. Anal. 255, 3149–3187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. DiBenedetto E.: Regularity properties of the solution of an n-dimensional two-phase Stefan problem. Boll. Un. Mat. Ital. Suppl. 129–152 (1980)

    Google Scholar 

  23. DiBenedetto E.: Continuity of weak solutions to certain singular parabolic equations. Ann. Mat. Pura Appl. 4(130), 131–176 (1982)

    Article  MathSciNet  Google Scholar 

  24. Escher J., Simonett G.: On Hele–Shaw models with surface tension. Math. Res. Lett. 3, 467–474 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Escher J., Simonett G.: Classical solutions for the quasi-stationary Stefan problem with surface tension. Differential equations, asymptotic analysis, and mathematicalphysics (Potsdam, 1996), Math. Res., vol. 100, Akademie Verlag, Berlin, pp. 98–104, 1997

  26. Escher J., Simonett G.: Classical solutions for Hele–Shaw models with surface tension. Adv. Differ. Equ. 2, 619–642 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Escher J., Simonett G.: A center manifold analysis for the Mullins–Sekerka model. J. Differ. Equ. 143, 267–292 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Escher J., Prüss J., Simonett G.: Analytic solutions for a Stefan problem with Gibbs–Thomson correction. J. Reine Angew. Math. 563, 1–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Friedman A.: The Stefan problem in several space variables. Trans. Am. Math. Soc. 133, 51–87 (1968)

    Article  MATH  Google Scholar 

  30. Friedman A.: Variational Principles and Free-Boundary Problems. Wiley, New York (1982)

    MATH  Google Scholar 

  31. Friedman A., Kinderlehrer D.: A one phase Stefan problem. Indiana Univ. Math. J. 24, 1005–1035 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  32. Friedman A., Reitich F.: The Stefan problem with small surface tension. Trans. Am. Math. Soc. 328, 465–515 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Friedman A., Reitich F.: Nonlinear stability of a quasi-static Stefan problem with surface tension: a continuation approach. Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4) 30, 341–403 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Garcke H., Sturzenhecker T.: The degenerate multi-phase Stefan problem with Gibbs–Thomson law. Adv. Math. Sci. Appl. 8, 929–941 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Glasner K., Otto F., Rump T., Slepcev D.: Ostwald ripening of droplets: the role of migration. Eur. J. Appl. Math. 20, 1–67 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gurtin M.E.: On the two phase problem with interfacial energy and entropy. Arch. Rational Mech. Anal. 96, 199–241 (1986)

    MathSciNet  ADS  MATH  Google Scholar 

  37. Gurtin M.E.: Toward a nonequilibrium thermodynamics of two-phase materials. Arch. Rational Mech. Anal. 100, 275–312 (1988)

    MathSciNet  ADS  MATH  Google Scholar 

  38. Gurtin M.E.: Multiphase thermomechanics with interfacial structure. I. Heat conduction and the capillary balance law. Arch. Rational Mech. Anal. 104, 195–221 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Hadzić M., Guo Y.: Stability in the Stefan problem with surface tension (I). Comm. Partial Differ. Equ. 35, 201–244 (2010)

    Article  MATH  Google Scholar 

  40. Hadzić M.: Orthogonality conditions and asymptotic stability in the Stefan problem with surface tension. Arch. Rational Mech. Anal. 203, 719–745 (2012)

    Article  ADS  MATH  Google Scholar 

  41. Hanzawa E.: Classical solutions of the Stefan problem. Tôhoku Math. J.(2) 33, 297–335 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hartman P.: Crystal growth: An introduction. North-Holland, Amsterdam (1973)

    Google Scholar 

  43. Hönig A., Niethammer B., Otto F.: On first-order corrections to the LSW theory. II. Finite systems. J. Stat. Phys. 119, 123–164 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Ishii M., Takashi H.: Thermo-fluid dynamics of two-phase flow. Springer, New York (2006)

    MATH  Google Scholar 

  45. Kamenomostskaja S.L.: On Stefan’s problem. Math. Sbornik 53, 485–514 (1965)

    MathSciNet  Google Scholar 

  46. Kinderlehrer D., Nirenberg L.: Regularity in free boundary problems. Ann. Scuola Norm. Sup. Pisa (4) 4, 373–391 (1977)

    MathSciNet  MATH  Google Scholar 

  47. Kinderlehrer D., Nirenberg L.: The smoothness of the free boundary in the one phase Stefan problem. Commun. Pure Appl. Math. 31, 257–282 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kneisel C. Über das Stefan-Problem mit Oberflächenspannung und thermischer Unterkühlung. PhD thesis University of Hannover, Germany, (2007)

  49. Knüpfer H., Masmoudi N.: Well-posedness and uniform bounds for a nonlocal third order evolution operator on an infinite wedge (2012) (Preprint)

  50. Knüpfer H., Masmoudi N.: Darcy’s flow with prescribed contact angle: Well-posedness and lubrication approximation. arXiv:1204.2278

  51. Ladyženskaja O.A., Solonnikov V.A., Ural’ceva N.N.: Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, vol. 23, American Mathematical Society, Providence (1968)

    Google Scholar 

  52. Langer J.S.: Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1–28 (1980)

    Article  ADS  Google Scholar 

  53. Latushkin Y., Prüss J., Schnaubelt R.: Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions. J. Evol. Equ. 6, 537–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Luckhaus S.: Solutions for the two-dimensional Stefan problem with the Gibbs–Thomson law for melting temperature. Eur. J. Appl. Math. 1, 101–111 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  55. Luckhaus S.: The Stefan problem with surface tension. Variational and free boundary problems pp. 153–157, IMA Math. Appl., vol. 53, Springer, New York, 1993

  56. Luckhaus S., Sturzenhecker T.: Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differ. Equ. 3, 253–271 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  57. Meirmanov A.M.: On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations. Math. Sb. 112, 170–192 (1980)

    MathSciNet  Google Scholar 

  58. Meirmanov A.M.: The Stefan Problem. De Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  59. Meirmanov A.M.: The Stefan problem with surface tension in the three dimensional case with spherical symmetry: non-existence of the classical solution. Eur. J. Appl. Math. 5, 1–20 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  60. Meyries M. Maximal regularity in weighted spaces, nonlinear boundary conditions, and global attractors. PhD thesis, Karlsruhe Institute of Technology, Germany, 2010

  61. Meyries M., Schnaubelt R.: Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions (2012) (Preprint)

  62. Matano , Matano : Asymptotic behavior of the free boundaries arising in one phase Stefan problems in multi-dimensional spaces. Lect. Notes Num. Appl. Anal. 5, 133–151 (1982)

    Google Scholar 

  63. Mullins W.W., Sekerka R.F.: Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323–329 (1963)

    Article  ADS  Google Scholar 

  64. Mullins W.W., Sekerka R.F.: Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444–451 (1964)

    Article  ADS  Google Scholar 

  65. Niethammer B.: Derivation of the LSW theory for Ostwald ripening by homogenization methods. Arch. Rational Mech. Anal. 147, 119–178 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Niethammer B.: The LSW model for Ostwald ripening with kinetic undercooling. Proc. R. Soc. Edinburgh Sect. A 130, 1337–1361 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. Niethammer B.: The mathematics of Ostwald ripening. Geometric analysis and nonlinear partial differential equations pp. 649–663, Springer, Berlin, 2003

  68. Niethammer B.: The influence of encounters on domain coarsening [Plenary lecture presented at the 80th Annual GAMM Conference, Gdańsk, 9th-13th February 2009]. ZAMM Z. Angew. Math. Mech. 90, 259–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. Niethammer B., Otto F.: Domain coarsening in thin films. Comm. Pure Appl. Math. 54, 361–384 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  70. Niethammer B., Otto F.: Ostwald ripening: the screening length revisited. Calc. Var. Partial Differ. Equ. 13, 33–68 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  71. Niethammer B., Pego R.L.: On the initial-value problem in the Lifshitz–Slyozov–Wagner theory of Ostwald ripening. SIAM J. Math. Anal. 31, 467–485 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  72. Niethammer B., Velázquez J.J.L.: Homogenization in coarsening systems. I. Deterministic case. Math. Models Methods Appl. Sci. 14, 1211–1233 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  73. Nochetto R.H.: A class of nondegenerate two-phase Stefan problems in several space variables. Comm. Partial Differ. Equ. 12, 21–45 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  74. Prüss J.: Maximal regularity for evolution equations in L p -spacess. Conf. Sem. Mat. Univ. Bari 285, 1–39 (2003)

    Google Scholar 

  75. Prüss J., Saal J., Simonett G.: Existence of analytic solutions or the classical Stefan problem. Math. Ann. 338(3), 703–755 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  76. Prüss J., Shibata Y., Shimizu S., Simonett G.: On the well-posedness of incompressible two-phase flows with phase transitions: the case of equal densities. Evol. Eqns. Control Theory 1, 171–194 (2012)

    Article  Google Scholar 

  77. Prüss J., Shimizu S.: On the well-posedness of incompressible two-phase flows with phase transitions: the case of different densities. J. Evol. Equ. (2012)(to appear)

  78. Prüss J., Simonett G.: Maximal regularity for evolution equations in weighted L p -spaces. Archiv Math. 82, 415–431 (2004)

    Article  MATH  Google Scholar 

  79. Prüss J., Simonett G.: Stability of equilibria for the Stefan problem with surface tension. SIAM J. Math. Anal. 40, 675–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  80. Prüss J., Simonett G., Wilke M.: On thermodynamically consistent Stefan problems with variable surface energy. arXiv:1109.4542. (Submitted)

  81. Prüss J., Simonett G., Zacher R.: Convergence of solutions to equilibria for nonlinear parabolic problems. J. Differ. Equ. 246, 3902–3931 (2009)

    Article  MATH  Google Scholar 

  82. Prüss J., Simonett G., Zacher R.: On normal stability for nonlinear parabolic problems. Discrete Contin. Dyn. Syst. Dynamical Systems, Differential Equations and Applications. 7th AIMS Conference, suppl., pp. 612–621, 2009

  83. Radkevitch E.: The Gibbs-Thompson correction and conditions for the existence of a classical solution of the modified Stefan problem. Dokl. Akad. Nauk SSSR 316 (1991), 1311–1315; translation in Soviet Math. Dokl. 43, 274–278 (1991)

  84. Radkevitch E.: Conditions for the existence of a classical solution of a modified Stefan problem (the Gibbs–Thomson law). Mat. Sb. 183 (1992), 77–101; translation in Russian Acad. Sci. Sb. Math. 75, 221–246 (1993)

  85. Röger M.: Solutions for the Stefan problem with Gibbs–Thomson law by a local minimisation. Interfaces Free Bound. 6, 105–133 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. Röger M.: Existence of weak solutions for the Mullins–Sekerka flow. SIAM J. Math. Anal. 37, 291–301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  87. Rubinstein L.I.: The Stefan Problem. Translations of Mathematical Monographs, vol. 27, American Mathematical Society, Providence (1971)

    Google Scholar 

  88. Sacks P.E.: Continuity of solutions of a singular parabolic equation. Nonlinear Anal. 7, 387–409 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  89. Struwe M.: Curvature flows on surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(1), 247–274 (2002)

    MathSciNet  Google Scholar 

  90. Tao T.: Why are solitons stable? Bull. Am. Math. Soc. (N.S.) 46, 1–33 (2009)

    Article  MATH  Google Scholar 

  91. Visintin A.: Supercooling and superheating effects in phase transitions, IMA J. Appl. Math. 35, 233–256 (1985)

    MathSciNet  Google Scholar 

  92. Visintin A.: Stefan problem with surface tension. Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche, 424. Istituto di Analisi Numerica del Consiglio Nazionale delle Ricerche, Pavia, 29 pp, 1984

  93. Visintin A.: Stefan problem with surface tension. Mathematical models for phase change problems (Óbidos, 1988) pp. 191–213. Internat. Ser. Numer. Math., vol. 88, Birkhäuser, Basel, 1989

  94. Visintin A.: Remarks on the Stefan problem with surface tension. In: Boundary value problems for partial differential equations and applications. (Eds. Lions, J.L. and Baiocchi, C.) RMA: Research Notes in Appl. Math. vol. 29, Masson, Paris, 1993

  95. Visintin A.: Models of Phase Transitions. Progress in Nonlinear Differential Equations and Their Applications, vol. 28. Birkhäuser, Boston (1996)

    Google Scholar 

  96. Ziemer W.P.: Interior and boundary continuity of weak solutions of degenerate parabolic equations. Trans. Am. Math. Soc. 271, 733–748 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  97. Yu W.: A quasisteady Stefan problem with curvature correction and kinetic undercooling. J. Partial Differ. Equ. 9, 55–70 (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gieri Simonett.

Additional information

Communicated by F. Otto

The research of G.S. was partially supported by the NSF Grant DMS-0600870. The research of R.Z. was partially supported by the Deutsche Forschungsgemeinschaft (DFG)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prüss, J., Simonett, G. & Zacher, R. Qualitative Behavior of Solutions for Thermodynamically Consistent Stefan Problems with Surface Tension. Arch Rational Mech Anal 207, 611–667 (2013). https://doi.org/10.1007/s00205-012-0571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0571-y

Keywords

Navigation