Skip to main content
Log in

On the General Ericksen–Leslie System: Parodi’s Relation, Well-Posedness and Stability

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we investigate the role of Parodi’s relation in the well-posedness and stability of the general Ericksen–Leslie system modeling nematic liquid crystal flows. First, we give a formal physical derivation of the Ericksen–Leslie system through an appropriate energy variational approach under Parodi’s relation, in which we can distinguish the conservative/dissipative parts of the induced elastic stress. Next, we prove global well-posedness and long-time behavior of the Ericksen–Leslie system under the assumption that the viscosity μ 4 is sufficiently large. Finally, under Parodi’s relation, we show the global well-posedness and Lyapunov stability for the Ericksen–Leslie system near local energy minimizers. The connection between Parodi’s relation and linear stability of the Ericksen–Leslie system is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges F., Ghidaglia J.-M.: Minimizing Ossen–Frank energy for nematic liquid crystals: algorithms and numerical results. Ann. Inst. H. Poincaré Phys. Théor. 66(4), 411–447 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Biot M.: Variational Principles in Heat Transfer: A Unified Lagrangian Analysis of Dissipative Phenomena. Oxford University Press, New York (1970)

    MATH  Google Scholar 

  3. Cavaterra C., Rocca E.: On a 3D isothermal model for nematic liquid crystals accounting for stretching terms. Z. Angew. Math. Phys. doi:10.1007/s00033-012-0219-7

  4. Cavaterra C., Rocca E., Wu H.: Global weak solution and blow-up criterion of the general Ericksen–Leslie system for nematic liquid crystal flows. Preprint (2012)

  5. Chen Y.M., Struwe M.: Existence and partial regularity for heat flow for harmonic maps. Math. Z. 201, 83–103 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Courant R., Hilbert D.: Methods of Mathematical Physics, vol. 1. Interscience, New York, 1953

  7. Currie P.: The orientation of liquid crystal by temperature gradients. Rheol. Acta 12, 165–169 (1973)

    Article  Google Scholar 

  8. Currie P.: Propagating plane disinclination surfaces in nematic liquid crystals. Mol. Cryst. Liq. Cryst. 19, 249–258 (1973)

    Article  Google Scholar 

  9. Currie P.: Parodi’s relation as a stability condition for nematics. Mol. Cryst. Liq. Cryst. 28, 335–338 (1974)

    Article  Google Scholar 

  10. Currie P.: Decay of weak waves in liquid crystals. J. Acoust. Soc. Am. 56(3), 765–767 (1974)

    Article  ADS  Google Scholar 

  11. de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Oxford Science Publications, Oxford (1993)

    Google Scholar 

  12. Ericksen J.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 22–34 (1961)

    Article  MathSciNet  Google Scholar 

  13. Ericksen J.: Hydrostatic Theory of Liquid Crystal. Arch. Rational Mech. Anal. 9, 371–378 (1962)

    MathSciNet  ADS  MATH  Google Scholar 

  14. Ericksen J.: Continuum theory of nematic liquid crystals. Res. Mechanica 21, 381–392 (1987)

    MathSciNet  Google Scholar 

  15. Ericksen J.: Liquid crystals with variable degree of orientation. Arch Rational Mech. Anal. 113, 97–120 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Grasselli M., Wu H.: Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow. Z. Angew. Math. Phys. 62, 979–992 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gurtin M.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  18. Hardt R., Kinderlehrer D.: Mathematical questions of liquid crystal theory. The IMA Volumes in Mathematics and its Applications, vol. 5. Springer, New York, 1987

  19. Huang S.Z.: Gradient inequalities, with applications to asymptotic behavior and stability of gradient–like systems. Mathematical Surveys and Monographs, vol. 126. AMS, Providence, 2006

  20. Hyon Y., Kwak D.-Y., Liu C.: Energetic variational approach in complex fluids: maximum dissipation principle. Discrete Contin. Dyn. Syst. 26(4), 1291–1304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jeffery G.: The motion of ellipsolidal particles immersed in a viscous fluid. Roy. Soc. Proc. 102, 102–161 (1922)

    Article  Google Scholar 

  22. Ladyzhenskaya O.A., Solonnikov N.A., Uraltseva N.N.: Linear and quasilinear equations of parabolic type. Transl. Math. Monographs, vol. 23. AMS, Providence, 1968

  23. Landau L.D., Lifshitz E.M.: Statistical Physics, Course of Theoretical Physics, vol. 5. Butterworths, London, 1996

  24. Larson R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, Oxford (1998)

    Google Scholar 

  25. Leslie F.: Some constitutive equations for anisotropic fluids. Q. J. Mech. Appl. Math. 19, 357–370 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  26. Leslie F.: Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Leslie F.: Theory of flow phenomena in liquid crystals. In: The Theory of Liquid Crystals, vol. 4, pp. 1–81. Academic Press, London-New York, 1979

  28. Lin FH.: Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena. Commun. Pure Appl. Math. 42, 789–814 (1989)

    Article  MATH  Google Scholar 

  29. Lin F.-H., Lin J.-Y., Wang C.-Y.: Liquid crystal flows in two dimensions. Arch. Rational Mech. Anal. 197, 297–336 (2010)

    Article  ADS  MATH  Google Scholar 

  30. Lin F.-H., Liu C.: Nonparabolic dissipative system modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin F.-H., Liu C.: Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discrete Contin. Dyn. Syst. 2, 1–23 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Lin F.-H., Liu C.: Existence of solutions for the Ericksen–Leslie system. Arch. Rational Mech. Anal. 154(2), 135–156 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Lin F.-H., Wang C.-Y.: On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin. Ann. Math. Ser. B 31(6), 921–938 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lin P., Liu C., Zhang H.: An energy law preserving C 0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227(2), 1411–1427 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Liu C., Shen J., Yang X.: Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical simulation. Commun. Comput. Phys. 2, 1184–1198 (2007)

    MATH  Google Scholar 

  36. Mazur P.: Onsager’s reciprocal relations and the thermodynamics of irreversible processes. Per. Pol. Chem. Eng. 41(2), 197–204 (1997)

    MathSciNet  Google Scholar 

  37. Onsager L.: Reciprocal relations in irreversible processes I. Phys. Rev. 37, 405–426 (1931)

    Article  ADS  Google Scholar 

  38. Onsager L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    Article  ADS  MATH  Google Scholar 

  39. Onsager L., Machlup S.: Fluctuations and irreversible processes. Phys. Rev. 91, 1505–1512 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Parodi O.: Stress tensor for a nematic liquid crystal. J. Phys. 31, 581–584 (1970)

    Article  Google Scholar 

  41. Rayleigh L. (previously Strutt J.-W.): Some general theorems relating to vibrations. Proc. Lond. Math. Soc. IV, 357–368 (1873)

  42. Serrin J.: On the interior of weak solutions of Navier–Stokes equations. Arch. Rational Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Simon L.: Asymptotics for a class of nonlinear evolution equation with applications to geometric problems. Ann. Math. 118, 525–571 (1983)

    Article  MATH  Google Scholar 

  44. Sun H., Liu C.: On energetic variational approaches in modelling the nematic liquid crystal flows. Discrete Contin. Dyn. Syst. 23(1&12), 455–475 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Temam R.: Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd edn. SIAM, 1995

  46. Truesdell C.: Rational Thermodynamics. McGraw-Hill, New York (1969)

    Google Scholar 

  47. Wu H.: Long-time behavior for nonlinear hydrodynamic system modelling the nematic liquid crystal flows. Discrete Contin. Dyn. Syst. 26(1), 379–396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu H., Xu X., Liu C.: Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties. Calc. Var. Partial Differ. Equ. 45(3&4), 319–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xu X., Zhang Z.-F.: Global regularity and uniqueness of weak solution for the 2D liquid crystal flows. J. Differ. Equ. 252, 1169–1181 (2012)

    Article  MATH  Google Scholar 

  50. Zhang J., Gong X., Liu C., Wen W., Sheng P.: Electrorheological fluid dynamics. Phys. Rev. Lett. 101, 1945032008 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Xu.

Additional information

Communicated by F. Lin

Hao Wu was partially supported by the NSF of China 11001058, Specialized Research Fund for the Doctoral Program of Higher Education and the “Chen Guang” project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation. Chun Liu and Xiang Xu were partially supported by NSF grants DMS-0707594 and DMS-1109107.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Xu, X. & Liu, C. On the General Ericksen–Leslie System: Parodi’s Relation, Well-Posedness and Stability. Arch Rational Mech Anal 208, 59–107 (2013). https://doi.org/10.1007/s00205-012-0588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0588-2

Keywords

Navigation