Skip to main content
Log in

The Role of Noise in Finite Ensembles of Nanomagnetic Particles

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The dynamics of finitely many nanomagnetic particles are described by the stochastic Landau–Lifshitz–Gilbert equation. We show that the system relaxes exponentially quickly to the unique invariant measure which is described by a Boltzmann distribution. We present two approaches to verify this result. The first uses the general theory of (Meyn and Tweedy, Adv Appl Prob 24:542–574, 1992; Meyn and Tweedy, Adv Appl Prob 25:487–517 1993; Meyn and Tweedy, Adv Appl Prob 25:518–548, 1993) for Markov chains, which involves the concepts of a Lyapunov structure, and irreducibility of transition probabilities; we show exponential convergence in a supremum topology, but lack explicit rates. The second approach shows exponential ergodicity in a weaker L 2 topology, with an explicit rate of convergence of the Arrhenius type law. Then, we discuss two implicit discretizations to approximate transition functions at both finite and infinite times: the first scheme is shown to inherit the geometric ‘unit-length’ property of single spins, as well as the Lyapunov structure, and is shown to be geometrically ergodic; moreover, iterates converge strongly with a rate for finite times. The second scheme is computationally more efficient since it is linear; it is shown to converge weakly at an optimal rate for all finite times. We use a general result of Shardlow and Stuart (Siam J Numer Anal 37(4):1120–1137 2000) to conclude convergence to the invariant measure of the limiting problem for both discretizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharoni A.: Thermal agitation of single domain particles. Phys. Rev. 135, A447–A449 (1964)

    Article  ADS  Google Scholar 

  2. Banas, L., Brzeźniak, Z., Neklyudov, M., Prohl, A.: Stochastic FerromagnetismAnalysis and Computation, De Gruyter (2013)

  3. Banas, L., Brzeźniak, Z., Ondrejat, M., Prohl, A.: Attractivity, invariance and ergodicity for Sdes On Riemannian Manifolds, arXiv1102.0728 (arXiv-preprint series) (2011)

  4. Brown W.F. Jr: Thermal fluctuations of a single-domain particle. Phys. Rev. 130, 1677–1686 (1963)

    Article  ADS  Google Scholar 

  5. Brzezniak, Z., Goldys, B.: Weak solutions of the stochastic Landau-Lifshitz-Gilbert equation, arXiv:0901.0039v1 (arXiv-preprint series) (2009)

  6. Coffey W.T., Cregg P.J., Crothers D.S.F., Waldron J.T., Wickstead A.W.: Simple approximate formulas for the magnetic relaxation time of single domain ferromagnetic particles with uniaxial anisotropy. J. Magn. Magn. Mater. 131, L301–L303 (1994)

    Article  ADS  Google Scholar 

  7. Engel K.J., Nagel R.: A short course on operator semigroups. Universitext. Springer, New York (2006)

    MATH  Google Scholar 

  8. Flandoli F., Lisei H.: Stationary conjugation of flows for parabolic SPDEs with multiplicative noise and some applications. Stochastic Anal. Appl. 22, 6, 1385–1420 (2004)

    Google Scholar 

  9. García-Palacios J.L., Lázaro F.J.: Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys. Rev. B 58, 14937–14958 (1998)

    Article  ADS  Google Scholar 

  10. Girsanov I.V.: On transforming a certain class of stochastic processes by absolutely continuous substitution of measures. Theory Probab Appl 5, 314–330 (1960)

    MathSciNet  Google Scholar 

  11. Girault V., Raviart P.-A.: Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  12. Gusak D., Kukush A., Kulik A., Mishura Y., Pilipenko A.: Theory of Stochastic Processes: With Applications to Financial Mathematics and Risk Theory. Springer, Berlin (2009)

    Google Scholar 

  13. Guionnet A., Zegarlinski B.: Lectures on Logarithmic Sobolev Inequalities, In: Séminaire de Probabilités, XXXVI, vol. 1801 of Lecture Notes in Math. Springer, Berlin, 1–134, 2003

  14. Hasminskii, R.Z.: Stochastic Stability of Differential Equations. Translated from the Russian by D. Louvish. Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics and Analysis, vol. 7. Sijthoff & Noordhoff, Alphen aan den Rijn, Germantown, 1980

  15. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, North-Holland Mathematical Library, vol. 24. Amsterdam-New York, North-Holland Publ. Co., 1989

  16. Kamppeter T., Mertens F.G., Moro E., Sánchez A., Bishop A.R.: Stochastic vortex dynamics in two-dimensional easy-plane ferromagnets: multiplicative versus additive noise. Phys. Rev. B 59, 11349–11357 (1999)

    Article  ADS  Google Scholar 

  17. Kružík M., Prohl A.: Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev. 48, 439–483 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kubo R., Hashitsume N.: Brownian Motion of Spins. Prog. Theor. Phys. Supplement 46, 210–220 (1970)

    Article  ADS  Google Scholar 

  19. Mattingly J.C., Stuart A.M., Higham D.J.: Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stochastic Process. Appl. 101(2), 185–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mentink J.H., Tretyakov M.V., Fasolino A., Katsnelson M.I., Rasing Th.: Stable and fast semi-implicit integration of the stochastic Landau-Lifshitz equation. J. Phys. Condens. Matter 22, 176001–176013 (2010)

    Article  ADS  Google Scholar 

  21. Meyn S.P., Tweedie R.L.: Stability of Markovian processes I: Criteria for discrete-time chains. Adv. Appl. Prob. 24, 542–574 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meyn S.P., Tweedie R.L.: Criteria for stability of Markovian processes II: continuous time processes and sampled chains. Adv. Appl. Prob. 25, 487–517 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meyn S.P., Tweedie R.L.: Criteria for stability of Markovian processes III: Foster-Lyapunov criteria for continuous time processes, with examples. Adv. Appl. Prob. 25, 518–548 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Néel L.: Théorie Du Trainage Magnétique Des Ferromagnétiques En Grains Fins Avec Applications Aux Terres Cuites. Ann. Geophys. 5, 99–136 (1949)

    Google Scholar 

  25. Novikov, A.A.: On moment inequalities and identities for stochastic integrals. In: Proc. Second Japan-USSR Symp. Prob. Theor., Lecture Notes in Math., 330, 333–339, Springer, Berlin, 1973

  26. Shardlow T., Stuart A.M.: A perturbation theory for ergodic Markov chains and application to numerical approximations. Siam J. Numer. Anal. 37(4), 1120–1137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sharpe, M.: General Theory of Markov Processes: pure and applied mathematics, vol. 133. Academic Press Inc., Boston, 1988

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Prohl.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neklyudov, M., Prohl, A. The Role of Noise in Finite Ensembles of Nanomagnetic Particles. Arch Rational Mech Anal 210, 499–534 (2013). https://doi.org/10.1007/s00205-013-0654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0654-4

Keywords

Navigation