Skip to main content
Log in

Well-Posedness of the Ericksen–Leslie System

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the local well-posedness of the Ericksen–Leslie system, and the global well-posedness for small initial data under a physical constraint condition on the Leslie coefficients, which ensures that the energy of the system is dissipated. Instead of the Ginzburg–Landau approximation, we construct an approximate system with the dissipated energy based on a new formulation of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Fundamental Principles of Mathematical Sciences, vol. 343. Springer, Heidelberg, 2011

  2. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equation. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Chemin J.-Y., Masmoudi N.: About lifespan of regular solutions of equations related to viscoelastic fluids. SIAM J. Math. Anal. 33, 84–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. E, W., Zhang, P.: A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit. Methods Appl. Anal. 13, 181–198 (2006)

    Google Scholar 

  5. Ericksen J.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 22–34 (1961)

    Article  MathSciNet  Google Scholar 

  6. Ericksen J.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113, 97–120 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hong M.: Global existence of solutions of the simplified Ericksen–Leslie system in dimension two. Calc. Var. PDE 40, 15–36 (2011)

    Article  MATH  Google Scholar 

  8. Huang T., Wang C.: Blow up criterion for nematic liquid crystal flows. Commun. Partial Differ. Equ. 37, 875–884 (2012)

    Article  MATH  Google Scholar 

  9. Kuzuu N., Doi M.: Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation. J. Phys. Soc. Jpn 52, 3486–3494 (1983)

    Article  ADS  Google Scholar 

  10. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin F.-H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Commun. Pure Appl. Math. 48, 501–537 (1995)

    Article  MATH  Google Scholar 

  12. Lin F.-H., Liu C.: Partial regularities of the nonlinear dissipative systems modeling the fow of liquid crystals. Discrete. Contin. Dyn. Syst. 2, 1–23 (1996)

    MATH  Google Scholar 

  13. Lin F.-H., Liu C.: Existence of solutions for the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 154, 135–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin F.-H., Lin J., Wang C.: Liquid crystal flows in two dimensions. Arch. Ration. Mech. Anal. 197, 297–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin F.-H., Wang C.: On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chin. Ann. Math. Ser. B 31, 921–938 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Parodi O.: Stress tensor for a nematic liquid crystal. Journal de Physique 31, 581–584 (1970)

    Article  Google Scholar 

  17. Wang C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Arch. Ration. Mech. Anal. 200, 1–19 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Wang, W., Zhang, P., Zhang, Z.: The small Deborah number limit of the Doi-Onsager equation to the Ericksen–Leslie equation. arXiv:1206.5480

  19. Wu H., Xu X., Liu C.: On the general Ericksen Leslie system: Parodi’s relation, well-posedness and stability. Arch. Ration. Mech. Anal. 208, 59–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu X., Zhang Z.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows. J. Differ. Equ. 252, 1169–1181 (2012)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingwen Zhang.

Additional information

Communicated by F. Lin

P. Zhang is partly supported by NSF of China under Grant 50930003 and 21274005.

Z. Zhang is partially supported by NSF of China under Grant 10990013 and 11071007, Program for New Century Excellent Talents in University and Fok Ying Tung Education Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Zhang, P. & Zhang, Z. Well-Posedness of the Ericksen–Leslie System. Arch Rational Mech Anal 210, 837–855 (2013). https://doi.org/10.1007/s00205-013-0659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0659-z

Keywords

Navigation